
RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL 

New Scheme Based On AICTE Flexible Curricula 

Artificial Intelligence and Data Science, VI-Semester 

Open Elective AD 604 (C) Compiler Design 
 
Unit-I: Introduction to compiling & Lexical Analysis 
Introduction of Compiler, Major data Structure in compiler, types of Compiler, Front-end and 
Back-endof compiler, Compiler structure: analysis-synthesis model of compilation, various 
phases of a compiler,Lexical analysis: Input buffering , Specification & Recognition of 
Tokens,Design of a Lexical AnalyzerGenerator, LEX. 
 
Unit-II Syntax Analysis &Syntax Directed Translation 
Syntax analysis: CFGs, Top down parsing, Brute force approach, recursive descent 
parsing,transformation on the grammars, predictive parsing, bottom up parsing, operator 
precedence parsing, LRparsers (SLR, LALR, LR),Parser generation. Syntax directed 
definitions: Construction of Syntax trees,Bottom up evaluation of S-attributed definition, L-
attribute definition, Top down translation, Bottom Upevaluation of inherited attributes 
Recursive Evaluation, Analysis of Syntax directed definition. 
 
Unit-III Type Checking & Run Time Environment 
Type checking: type system, specification of simple type checker, equivalence of expression, 
types, typeconversion, overloading of functions and operations, polymorphic functions. Run 
time Environment:storage organization, Storage allocation strategies, parameter passing, 
dynamic storage allocation, Symbol table, Error Detection & Recovery, Ad-Hoc and 
Systematic Methods. 
 
Unit –IV Code Generation 
Intermediate code generation: Declarations, Assignment statements, Boolean expressions, 
Casestatements, Back patching, Procedure calls Code Generation: Issues in the design of 
code generator, Basicblock and flow graphs, Register allocation and assignment, DAG 
representation of basic blocks, peepholeoptimization, generating code from DAG. 
 
Unit –V Code Optimization 
Introduction to Code optimization: sources of optimization of basic blocks, loops in flow 
graphs, deadcode elimination, loop optimization, Introduction to global data flow analysis, 
Code Improvingtransformations ,Data flow analysis of structure flow graph Symbolic 
debugging of optimized code. 
 
References:s 
1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and 
Tools , Pearson Education 
2 Raghavan, Compiler Design, TMH Pub. 
3. Louden. Compiler Construction: Principles and Practice, Cengage Learning 
4. A. C. Holub. Compiler Design in C , Prentice-Hall Inc., 1993. 
5. Mak, writing compiler & Interpreters, Willey Pub. 


