RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Computer Science & Information Technology, VII-Semester

CSIT-701 Internet of Things

Objective:

Students will understand the concepts of Internet of Things and can able to build IoT applications.

Course Outcomes: At the end of this course, students would be able to:

- 1. Understand the key components that make up an IoT system.
- 2. Appreciate the role of big data, cloud computing and data analytics in a typical IoT system.
- 3. Understand where the IoT concept fits within the broader ICT industry and possible future trends.
- 4. Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks.
- 5. Apply the knowledge and skills acquired during the course to build and test a complete, working IoT system involving prototyping, programming and data analysis

UNIT I

Introduction: Definition, Characteristics of IOT, IOT Conceptual framework, IOT Architectural view, Physical design of IOT, Logical design of IOT, Application of IOT.

UNIT II

Machine-to-machine (M2M), SDN (software defined networking) and NFV(network function virtualization) for IOT, data storage in IOT, IOT Cloud Based Services.

UNIT III

Design Principles for Web Connectivity: Web Communication Protocols for connected devices, Message Communication Protocols for connected devices, SOAP, REST, HTTP Restful and Web Sockets. Internet Connectivity Principles: Internet Connectivity, Internet based communication, IP addressing in IOT, Media Access control.

UNIT IV

Sensor Technology, Participatory Sensing, Industrial IOT and Automotive IOT, Actuator, Sensor data Communication Protocols, Radio Frequency Identification Technology, Wireless Sensor Network Technology.

UNIT V

IOT Design methodology: Specification -Requirement, process, model, service, functional & operational view.IOT Privacy and security solutions, Raspberry Pi & arduino devices. IOT Case studies: smart city streetlights control & monitoring.

Recommended Books:

- 1. Rajkamal,"Internet of Things", Tata McGraw Hill publication
- 2. Vijay Madisetti and Arshdeep Bahga, "Internet of things (A-Hand-on-Approach)" 1st Edition, Universal Press
- 1. Hakima Chaouchi "The Internet of Things: Connecting Objects", Wiley publication.
- 2. Charless Bell "MySQL for the Internet of things", Apress publications.
- 3. Francis dacosta "Rethinking the Internet of things: A scalable Approach to connecting everything", 1st edition, Apress publications 2013.
- 4. Donald Norris"The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and BeagleBone Black", McGraw Hill publication.

List of Experiments:

- 1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
- 2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.
- 4. To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
- 5. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.
- 6. To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
- 7. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
- 8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
- 9. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thingspeak cloud.
- 10. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thingspeak cloud.
- 11. To install MySQL database on Raspberry Pi and perform basic SQL queries.
- 12. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.
- 13. Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and print it.
- 14. Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity data to TCP client when requested.
- 15. Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity data to UDP client when requested.