RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Electrical & Electronics Engineering, VI-Semester

Departmental Elective EX- 603 (C) Electromagnetic Waves

UNIT-I

Transmission Lines

Introduction, Concept of distributed elements, Equations of voltage and current, Standing waves and impedance transformation, Lossless and low-loss transmission lines, Power transfer on a transmission line, Analysis of transmission line in terms of admittances, Transmission line calculations with the help of Smith chart, Applications of transmission line, Impedance matching using transmission lines.

UNIT-II

Maxwell's Equations

Basic quantities of Electromagnetics, Basic laws of Electromagnetics: Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's equations, Surface charge and surface current, Boundary conditions at media interface.

UNIT-III

Uniform Plane Wave

Homogeneous unbound medium, Wave equation for time harmonic fields, Solution of the wave equation, Uniform plane wave, Wave polarization, Wave propagation in conducting medium, Phase velocity of a wave, Power flow and Poynting vector.

UNIT-IV

Plane Waves at Media Interface

Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction of waves at dielectric interface, Total internal reflection, Wave polarization at media interface, Brewster angle, Fields and power flow at media interface, Lossy media interface, Reflection from conducting boundary.

UNIT-V

Waveguides

Parallel plane waveguide: Transverse Electric (TE) mode, transverse Magnetic(TM) mode, Cut-off frequency, Phase velocity and dispersion. Transverse Electromagnetic (TEM) mode, Analysis of waveguide-general approach, Rectangular waveguides.

UNIT-VI

Antennas

Radiation parameters of antenna, Potential functions, Solution for potential functions, Radiations from Hertz dipole, Near field, Far field, Total power radiated by a dipole, Radiation resistance and radiation pattern of Hertz dipole, Hertz dipole in receiving mode.

REFERENCE BOOKS

1.R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.

- 2. D. K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley, 1989.
- 3. M. N.O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 2007.
- 4. C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, 2012.
- 5. C. A. Balanis, "Antenna Theory: Analysis and Design", John Wiley & Sons, 2005.