RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL New Scheme Based On AICTE Flexible Curricula B.Tech. First Year

Branch- Common to All Disciplines

BT104	Basic Electrical & Electronics	2L-0T-2P	3Credits
	Engineering		Screates

Course Contents:

Unit-I:

D.C. Circuits: Voltage and current sources, dependent and independent sources, Units and dimensions, Source Conversion, Ohm's Law, Kirchhoff's Law, Superposition theorem, Thevenin's theorem and their application for analysis of series and parallel resistive circuits excited by independent voltage sources, Power & Energy in such circuits. Mesh & nodal analysis, Star Delta transformation & circuits.

Unit – II :

1- phase AC Circuits: Generation of sinusoidal AC voltage, definition of average value, R.M.S. value, form factor and peak factor of AC quantity, Concept of phasor, Concept of Power factor, Concept of impedance and admittance, Active, reactive and apparent power, analysis of R-L, R-C, R-L-C series & parallel circuit

3-phase AC Circuits: Necessity and advantages of three phase systems, Meaning of Phase sequence, balanced and unbalanced supply and loads. Relationship between line and phase values for balanced star and delta connections. Power in balanced & unbalanced three-phase system and their measurements

Unit – III : Magnetic Circuits: Basic definitions, magnetization characteristics of Ferro magnetic materials, self inductance and mutual inductance, energy in linear magnetic systems, coils connected in series, AC excitation in magnetic circuits, magnetic field produced by current carrying conductor, Force on a current carrying conductor. Induced voltage, laws of electromagnetic Induction, direction of induced E.M.F.

Single phase transformer- General construction, working principle, e.m.f. equation, equivalent circuits, phasor diagram, voltage regulation, losses and efficiency, open circuit and short circuit test

Unit IV:

Electrical Machines: Construction, Classification & Working Principle of DC machine, induction machine and synchronous machine. Working principle of 3-Phase induction motor, Concept of slip in 3- Phase induction motor, Explanation of Torque-slip characteristics of 3-Phase induction motor. Types of losses occurring in electrical machines. Applications of DC machine, induction machine and synchronous machine. **Unit V :**

Basic Electronics: Number systems & Their conversion used in digital electronics, De morgan's theorem, Logic Gates, half and full adder circuits, R-S flip flop, J-K flip flop. Introduction to Semiconductors, Diodes, V-I characteristics, Bipolar junction transistors (BJT) and their working, introduction to CC, CB & CE transistor configurations, different configurations and modes of operation of BJT

Course outcomes:

The final outcome of the subject will result into an enhancement in understanding the basic concepts of Core Electrical Engineering subjects. The topics covered under this subject will help to enhance the basic understanding of Electrical machines and power systems and basic electronics.

Evaluation: Evaluation will be continuous and integral part of the class followed by final examination.

List of experiments/demonstrations:

- Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- Measuring the steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in voltage (transient may be observed on a storage oscilloscope). Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification. Observation of phase differences between current and voltage. Resonance in R-L-C circuits.
- Transformers: Observation of the no-load current waveform on an oscilloscope (non- sinusoidal wave-shape due to B-H curve nonlinearity should be shown along with a discussion about harmonics). Loading of a transformer: measurement of primary and secondary voltages and currents, and power.
- Determination of equivalent circuit parameters of a single phase transformer by O.C. and S.C. tests and estimation of voltage regulation and efficiency at various loading conditions and

verification by load test.

- Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine.
- Torque Speed Characteristic of separately excited dc motor.
- Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super- synchronous speed.
- Synchronous Machine operating as a generator: stand-alone operation with a load. Control of voltage through field excitation.
- Study of V-I Characteristics of Diodes.
- Applications of Diodes and their verification.
- Transistor applications as amplifier and switch.
- Verification of truth table for various gates, Flip-Flops.
- Realizations of Various gates, Flip-Flops etc.
- Verification of De morgan's theorems.

References

- 1. D.P. Kothari & I.J. Nagrath, Basic Electrical Engineering, Tata McGraw Hill, latest edition.
- 2. S.N. Singh, Basic Electrical Engineering, P.H.I.,2013
- 3. Rajendra Prasad, Fundamentals of Electrical Engineering, Prentice Hall, 2014
- 4. M.S. Sukhija, T. K. Nagsarkar, Basic Electrical and electronics engineering, Oxford University press,2012
- 5. C.L. Wadhwa, Basic Electrical Engineering. New Age International.
- 6. B.L. Theraja & A.K Theraja Textbook of Electrical Technology Vol. 1, S. Chand Publication
- 7. E. Hughes & I.M. Smith Hughes Electrical Technology Pearson
- 8. Vincent Del Toro Electrical Engineering Fundamentals