" Silberschatz, Galvin, Gagne ., ...

'-ﬂ_,-l-._\l_ ¥

ASSOCIATE PUBLISHER Dian Sayre

EDITORIAL ASSISTANT Carolyn Weisman
SENIOR PRODUCTION EDITOR Ken Santor
COVER DESIGNER Howard Grossman
COVER ILLUSTRATIONS Susan Cyr

TEXT DESIGNER Judy Allan

This book was set in Palatino by the author using LaTeX and printed and bound by
R.R. Donnelley/Jefferson City. The cover was printed by R. R. Donnelley/Jefferson City

This book is printed on acid free paper. -]

Copyright © 2009 John Wiley & Sons, Inc. All rights reserved.

Mo part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise. except as permitied under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, WA 01923,
(978)750-8400, fax (978)750-4470. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030 (201)748-6011, fax (201)748-6008, E-Mail:
PERMREQ@WILEY.COM.

To order books or for customer service call 1-800-CALL WILEY (225-3945).

[SBM: 978-0-470-12872-5
Printed in the United States of America

09876543

To my children, Lemor, Sivan, and Aaron
and my Nicolette

Avi Silberschatz

To my wife, Carla,
and my children, Gwen, Owen, and Maddie

Peter Baer Galvin

To my wife, Pat,
and our sons, Tom and Jay

Greg Gagne

Abraham Silberschatz is the Sidney]. Weinberg Professor & Chair of Com-
puter Science at Yale University. Prior to joining Yale, he was the Vice President
of the Information Sciences Research Center at Bell Laboratories. Prior to that,
he held a chaired professorship in the Department of Computer Sciences at the
University of Texas at Austin.

Professor Silberschatz is an ACM Fellow and an IEEE Fellow. e received
the 2002 IEEE Taylor L. Booth Education Award, the 1998 ACM Karl V. Karl-
strom Outstanding Educator Award, and the 1997 ACM SIGMOD Contribution
Award. In recognition of his outstanding level of innovation and technical
excellence, he was awarded the Bell Laboratories President’s Award for three
different projects—the QTM Project (1998), the DataBlitz Project (1999), and
the NetInventory Project (2004).

Professor Silberschatz” writings have appeared in numerous ACM and
IEEE publications and other professional conferences and journals. He is a
coauthor of the textbook Database System Concepts. He has also written Op-Ed
articles for the New York Times, the Boston Globe, and the Hartford Courant,
among others.

Peter Baer Galvin is the chief technologist for Corporate Technologies
(www.cptech.com), a computer facility reseller and integrator. Before that, Mr.
Galvin was the systems manager for Brown University’s Computer Science
Department. He is also Sun columnist for ;login: magazine. Mr. Galvin has
written articles for Byte and other magazines, and has written columns for
SunWorld and SysAdmin magazines. As a consultant and trainer, he has given
talks and taught tutorials on security and system administration worldwide.

Greg Gagne is chair of the Computer Science department at Westminster
College in Salt Lake City where he has been teaching since 1990. In addition
to teaching operating systems, he also teaches computer networks, distributed
systems, and software engineering. He also provides workshops to computer
science educators and industry professionals.

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C or Java. The hardware topics required
for an understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
at the end of each chapter contain pointers to research papers in which results
were first presented and proved, as well as references to material for further
reading. In place of proofs, figures and examples are used to suggest why we
should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems” Solaris; Linux; Microsoft Windows
Vista, Windows 2000, and Windows XP; and Apple Mac OS X. When we refer
to Windows XP as an example operating system, we are implying Windows
Vista, Windows XP, and Windows 2000. If a feature exists in a specific release,
we state this explicitly.

vii

(2

The organization of this text reflects our many years of teaching courses on
operating systems. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2005 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting Web site for this text, we provide several sample
syllabi that suggest various approaches for using the text in both introductory
and advanced courses. As a general rule, we encourage readers to progress
sequentially through the chapters, as this strategy provides the most thorough
study of operating systems. However, by using the sample syllabi, a reader can
select a different ordering of chapters (or subsections of chapters).

On-line support for the textis provided by WileyPLUS. On this site, students
can find sample exercises and programming problems, and instructors can
assign and grade problems. In addition, in WileyPLUS, students can access new
operating-system simulators, which are used to work through exercises and
hands-on lab activities. References to the simulators and associated activities
appear at the ends of several chapters in the text.

The text is organized in nine major parts:

¢ Overview. Chapters 1 and 2 explain what operating systems are, what they
do, and how they are designed and constructed. These chapters discuss what
the common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students inlower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

o Process management and Process coordination. Chapters 3 through 7
describe the process concept and concurrency as the heart of modern
operating systems. A process is the unit of work in a system. Such
a system consists of a collection of concurrently executing processes,
some of which are operating-system processes (those that execute system
code) and the rest of which are user processes (those that execute user
code). These chapters cover methods for process scheduling, interprocess
communication, process synchronization, and deadlock handling. Also
included is a discussion of threads, as well as an examination of issues
related to multicore systems.

© Memory management. Chapters 8 and 9 deal with the management of
main memory during the execution of a process. To improve both the
utilization of the CPU and the speed of its response to its users, the
computer must keep several processes inmemory. There are many different

[}

ix

management, and the effectiveness of a particular algorithm depends on
the situation.

Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and 1I/0 are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access
to both data and programs. We describe the classic internal algorithins
and structures of storage management and provide a firm practical
understanding of the algorithms used —their properties, advantages, and
disadvantages. Our discussion of storage also includes matters related
to secondary and tertiary storage. Since the I/O devices that attach to a
computer vary widely, the operating system needs to provide a wide range
of functionality to applications to allow them to control all aspects of these
devices. We discuss system 1/0 in depth, including 1/0 system design,
interfaces, and internal system structures and functions. In many ways,
/0 devices are the slowest major components of the computer. Because
they represent a performance bottleneck, we also examine performance
issues associated with I/0 devices.

Protection and security. Chapters 14 and 15 discuss the mechanisms
necessary for the protection and security of computer systems. The
processes in an operating system must be protected from one another’s
activities, and to provide such protection, we must ensure that only
processes that have gained proper authorization from the operating system
can operate on the files, memory, CPU, and other resources of the system.
Protection is a mechanism for controlling the access of programs, processes,
or users to the resources defined by a computer system. This mechanism
must provide a means of specifying the controls to be imposed, as
well as a means of enforcement. Security protects the integrity of the
information stored in the system (both data and code), as well as the
physical resources of the system, from unauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency.

Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability -
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization
and communication, as well as for dealing with deadlock problems and a
variety of failures that are not encountered in a centralized system.

Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be “correct”
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

b
‘r\'{
(@
;
&
ty

© Case studies. Chapters 21 through 23 in the book, and Appendices A
through C (which are available on www.wiley.com/go/global/silberschatz
and in WileyPLUS), integrate the concepts described in the earlier chapters
by describing real operating systems. These systems include Linux,
Windows XP, FreeBSD, Mach, and Windows 2000. We chose Linux
and FreeBSD because UNIX—at one time—was almost small enough
to understand yet was not a “toy” operating system. Most of its
internal algorithms were selected for simplicity, rather than for speed
or sophistication. Both Linux and FreeBSD are readily available to
computer-science departments, so many students have access to these
systems. We chose Windows XP and Windows 2000 because they provide
an opportunity for us to study a modern operating system with a design
and implementation drastically different from those of UNIX. Chapter 23
briefly describes a few other influential operating systems.

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows Vista,
Windows 2000, and Windows XP) and various versions of UNIX (including
Solaris, BSD, and Mac OS X). We also provide a significant amount of coverage
of the Linux operating system reflecting the most recent version of the kernel
— Version 2.6—at the time this book was written.

The text also provides several example programs written in C and
Java. These programs are intended to run in the following programming
environments:

¢ Windows systems. The primary programming environment for Windows
systems is the Win32 API (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat-
ing the use of the Win32 APL. Example programs were tested on systems
running Windows Vista, Windows 2000, and Windows XP.

© POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows Vista, Windows XP, and Windows 2000 sys-
tems can also run certain POSIX programs, our coverage of POSIX focuses
primarily on UNIX and Linux systems. POSIX-compliant systems must
implement the POSIX core standard (POSIX.1): Linux, Solaris, and Mac OS
X are examples of POSIX-compliant systems. POSIX also defines several
extensions to the standards, including real-time extensions (POSIX1.b) and
an extension for a threads library (POSIX1.c, better known as Pthreads). We
provide several programming examples written in C illustrating the POSIX
base API, as well as Pthreads and the extensions for real-time programming.
These example programs were tested on Debian Linux 2.4 and 2.6 systems,
Mac 0s X 10.5, and Solaris 10 using the gcc 3.3 and 4.0 compilers.

© Java. Java is a widely used programming language with a rich API and
built-in language support for thread creation and management. Java

xi

programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.5 JVM.

We have chosen these three programming environments because it is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using all three programming environments, allowing the reader
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX AFPI; socket
programming in TCP/IP is highlighted using the Java APL

As we wrote the Eighth Edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many
of the chapters. Most importantly, we have added coverage of open-source
operating systems in Chapter 1. We have also added more practice exercises
for students and included solutions in WileyPLUS, which also includes new
simulators to provide demonstrations of operating-system operation. Below,
we provide a brief outline of the major changes to the various chapters:

¢ Chapter 1, Introduction, has been expanded to include multicore CPUs,
clustered computers, and open-source operating systems.

o Chapter 2, System Structures, provides significantly updated coverage of
virtual machines, as well as multicore CPUs, the GRUB boot loader, and
operating-system debugging.

© Chapter 3, Process Concept, provides new coverage of pipes as a form of
interprocess communication.

O

Chapter 4, Multithreaded Programming, adds new coverage of program-
ming for multicore systems.

(o]

Chapter 5, Process Scheduling, adds coverage of virtual machine schedul-
ing and multithreaded, multicore architectures.

O

Chapter 6, Synchronization, adds a discussion of mutual exclusion locks,
priority inversion, and transactional memory.

o Chapter 8, Memory-Management Strategies, includes discussion of
NUMA.

Xii

f'f;,p:fa\///;m:‘f;s: P A L) s e, o e oo
ik Sl COLL Y Ul R R L H
"ot et

¢ Chapter 9, Virtual-Memory Management, updates the Solaris example to
include Solaris 10 memory management.

o Chapter 10, File System, is updated with current technologies and
capacities.

¢ Chapter 11, Implementing File Systems, includes a full description of
Sun’s ZFS file system and expands the coverage of volumes and directories.

¢ Chapter 12, Secondary-Storage Structure, adds coverage of iSCSI, vol-
umes, and ZFS pools.

¢ Chapter 13, I/O Systems, adds coverage of PCIX PCI Express, and Hyper-
Transport.

@]

Chapter 16, Distributed Operating Systems, adds coverage of 802.11
wireless networks.

o

Chapter 21, The Linux System, has been updated to cover thelatest version
of the Linux kernel.

¢ Chapter 23, Influential Operating Systems, increases coverage of very
early computers as well as TOPS-20, CP/M, MS-DOS, Windows, and the
original Mac OS.

- s
YR =

0
)

et
fwg s

O
0
)

BLE ana? w © NS i) vl S bl U E
7 =

To emphasize the concepts presented in the text, we have added several
programming problems and projects that use the POSIX and Win32 AFIs, as
well as Java. We have added more than 15 new programming problems, which
emphasize processes, threads, shared memory, process synchronization, and
networking. In addition, we have added or modified several programming
projects that are more involved than standard programming exercises. These
projects include adding a system call to the Linux kernel, using pipes on
both UNIX and Windows systems, using UNIX message queues, creating
multithreaded applications, and solving the producer—consumer problem
using shared memory.

The Eighth Edition also incorporates a set of operating-system simulators
designed by Steven Robbins of the University of Texas at San Antonio. The
simulators are intended to model the behavior of an operating system as it
performs various tasks, such as CPU and disk-head scheduling, process creation
and interprocess communication, starvation, and address translation. These
simulators are written in Java and will run on any computer system with
Java 1.4. Students can download the simulators from WileyPLUS and observe
the behavior of several operating system concepts in various scenarios. In
addition, each simulator includes several exercises that ask students to set
certain parameters of the simulator, observe how the system behaves, and then
explain this behavior. These exercises can be assigned through wileyPLUS. The
WileyPLUS course also includes algorithmic problems and tutorials developed
by Scott M. Pike of Texas A&M University.

xiii

The following teaching supplements are available in wileyPLUS and on
www.wiley.com/go/global/silberschatz: a set of slides to accompany the
book, model course syllabi, all C and Java source code, up-to-date errata,
three case study appendices and the Distributed Communication appendix.
The WileyPLUS course also contains the simulators and associated exercises,
additional practice exercises (with solutions) not found in the text, and a
testbank of additional problems. Students are encouraged to solve the practice
exercises on their own and then use the provided solutions to check their own
answers.

To obtain restricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are available only to faculty who use this text.

We use the mailman system for communication among the users of Operating
System Concepts. If you wish to use this facility, please visit the following URL
and follow the instructions there to subscribe:

http:/ /mailman.cs.yale.edu/mailman/listinfo/os-book
The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

0s-book@cs.yale.edu
Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book-authors@cs.yale.edu.

This book is derived from the previous editions, the first three of which
were coauthored by James Peterson. Others who helped us with previous
editions include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black,

X1V

Tluemin

Lo

o]

[

Joseph Boykin, Jeff Brumfield, Gael Buckley, Roy Campbell, P. C. Capon, John
Carpenter, Gil Carrick, Thomas Casavant, Bart Childs, Ajoy Kumar Datta,
Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake, M. Racsit
Eskicioglu, Hans Flack, Robert Fowler, G. Scott Graham, Richard Guy, Max
Hailperin, Rebecca Hartman, Wayne Hathaway, Christopher Haynes, Don
Heller, Bruce Hillyer, Mark Holliday, Dean Hougen, Michael Huangs, Ahmed
Kamel, Morty Kewstel, Richard Kieburtz, Carol Kroll, Morty Kwestel, Thomas
LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary Lippman, Carolyn
Miller, Michael Molloy, Euripides Montagne, Yoichi Muraoka, Jim M. Ng,
Banu Ozden, Ed Posnak, Boris Putanec, Charles Qualline, John Quarterman,
Mike Reiter, Gustavo Rodriguez-Rivera, Carolyn J. C. Schauble, Thomas P.
Skinner, Yannis Smaragdakis, Jesse St. Laurent, John Stankovic, Adam Stauffer,
Steven Stepanek, John Sterling, Hal Stern, Louis Stevens, Pete Thomas, David
Umbaugh, Steve Vinoski, Tommy Wagner, Larry L. Wear, John Werth, James
M. Westall, J. S. Weston, and Yang Xiang

Parts of Chapter 12 were derived from a paper by Hillyer and Silberschatz
[1996]. Parts of Chapter 17 were derived from a paper by Levy and Silberschatz
[1990]. Chapter 21 was derived from an unpublished manuscript by Stephen
Tweedie. Chapter 22 was derived from an unpublished manuscript by Dave
Probert, Cliff Martin, and Avi Silberschatz. Appendix C was derived from
an unpublished manuscript by Cliff Martin. Cliff Martin also helped with
updating the UNIX appendix to cover FreeBSD. Some of the exercises and
accompanying solutions were supplied by Arvind Krishnamurthy.

Mike Shapiro, Bryan Cantrill, and Jim Mauro answered several Solaris-
related questions. Bryan Cantrill from Sun Microsystems helped with the ZFS
coverage. Steve Robbins of the University of Texas at San Antonio designed
the set of simulators that we incorporate in WileyPLUS. Reece Newman
of Westminster College initially explored this set of simulators and their
appropriateness for this text. Josh Dees and Rob Reynolds contributed coverage
of Microsoft’s .NET. The project for POSIX message queues was contributed by
John Trono of Saint Michael’s College in Colchester, Vermont.

Marilyn Turnamian helped generate figures and presentation slides. Mark
Wogahn has made sure that the software to produce the book (e.g., Latex
macros, fonts) works properly.

Our Associate Publisher, Dan Sayre, provided expert guidance as we
prepared this edition. He was assisted by Carolyn Weisman, who managed
many details of this project smoothly. The Senior Production Editor Ken
Santor, was instrumental in handling all the production details. Lauren Sapira
and Cindy Johnson have been very helpful with getting material ready and
available for WileyPlus.

Beverly Peavler copy-edited the manuscript. The freelance proofreader was
Katrina Avery; the freelance indexer was WordCo, Inc.

Abraham Silberschatz, New Haven, CT, 2008
Peter Baer Galvin, Burlington, MA, 2008
Greg Gagne, Salt Lake City, UT, 2008

PART ONE H OVERVIEW

Chapter1 Introduction

1.1 What Operating Systems Do 3 1.9 Protection and Security 29

1.2 Computer-System Organization 6 1.10 Distributed Systems 30

1.3 Computer-System Architecture 12 1.11 Special-Purpose Systems 32

1.4 Operating-System Structure 18 1.12 Computing Environments 34

1.5 Operating-System Operations 20 1.13 Open-Source Operating Systems 37
1.6 Process Management 23 1.14 Summary 40

1.7 Memory Management 24 Exercises 42

1.8 Storage Management 25 Bibliographical Notes 46

Chapter 2 System Structures

2.1 Operating-System Services 49 2.8 Virtual Machines 76
2.2 User Operating-System Interface 52 2.9 Operating-System Debugging 84
2.3 System Calls 55 2.10 Operating-System Generation 88
2.4 Types of System Calls 58 2.11 System Boot 89
2.5 System Programs 66 2.12 Summary 90
2.6 Operating-System Design and Exercises 91

Implementation 68 Bibliographical Notes 97

2.7 Operating-System Structure 70

PART TWO W PROCESS MANAGEMENT
Chapter 3 Process Concept

3.1 Process Concept 101 3.6 Communication in Client—
3.2 Process Scheduling 105 Server Systems 128

3.3 Operations on Processes 110 3.7 Summary 140

3.4 Interprocess Communication 116 Exercises 141

3.5 Examples of IPC Systems 123 Bibliographical Notes 152

Xv

Xvi

arients

SLOILLE LS

Chapter4 Multithreaded Programming

4.1 Overview 153 4.5 Operating-System Examples 171
4.2 Multithreading Models 157 4.6 Summary 174

4.3 Thread Libraries 159 Exercises 174

4.4 Threading Issues 165 Bibliographical Notes 181

Chapter 5 Process Scheduling

5.1 Basic Concepts 183 5.6 Operating System Examples 206
5.2 Scheduling Criteria 187 5.7 Algorithm Evaluation 213

5.3 Scheduling Algorithms 188 58 Summary 217

5.4 Thread Scheduling 199 Exercises 218

5.5 Multiple-Processor Scheduling 200 Bibliographical Notes 222

PART THREE B PROCESS COORDINATION

Chapter 6 Synchronization

6.1 Background 225 6.7 Monitors 244

6.2 The Critical-Section Problem 227 6.8 Synchronization Examples 252
6.3 Peterson’s Solution 229 6.9 Atomic Transactions 257

6.4 Synchronization Hardware 231 6.10 Summary 267

6.5 Semaphores 234 Exercises 267

6.6 Classic Problems of Bibliographical Notes 280

Synchronization 239

Chapter 7 Deadlocks

7.1 System Model 283 7.6 Deadlock Detection 301

7.2 Deadlock Characterization 285 7.7 Recovery from Deadlock 304
7.3 Methods for Handling Deadlocks 290 7.8 Summary 306

7.4 Deadlock Prevention 291 Exercises 307

7.5 Deadlock Avoidance 294 Bibliographical Notes 310

PART FOUR B MEMORY MANAGEMENT

Chapter 8 Memory-Management Strategies

8.1 Background 315 8.6 Segmentation 342

8.2 Swapping 322 8.7 Example: The Intel Pentium 345
8.3 Contiguous Memory Allocation 324 8.8 Summary 349

8.4 Paging 328 Exercises 350

8.5 Structure of the Page Table 337 Bibliographical Notes 354

Chapter 9 Virtual-Memory Management

9.1 Background 357

9.2 Demand Paging 361

9.3 Copy-on-Write 367

9.4 Page Replacement 369

9.5 Allocation of Frames 382
9.6 Thrashing 386

9.7 Memory-Mapped Files 390

9.8 Allocating Kernel Memory 396
9.9 Other Considerations 399

9.10 Operating-System Examples 405
9.11 Summary 407

Exercises 409
Bibliographical Notes 416

PART FIVE H STORAGE MANAGEMENT

Chapter 10 File System

10.1 File Concept 421
10.2 Access Methods 430

10.3 Directory and Disk Structure 433

10.4 File-System Mounting 444
10.5 File Sharing 446

10.6
10.7

Protection 451

Summary 456

Exercises 457
Bibliographical Notes 458

Chapter 11 Implementing File Systems

11.1 File-System Structure 461

11.2 File-System Implementation 464

11.3 Directory Implementation 470
11.4 Allocation Methods 471
11.5 Free-Space Management 479

11.6 Efficiency and Performance 482

11.7
11.8
11.9
11.10

Recovery 486
NFS 490
Example: The WAFL File System 496
Summary 498

Exercises 499
Bibliographical Notes 502

Chapter 12 Secondary-Storage Structure

12.1 Overview of Mass-Storage
Structure 505

12.2 Disk Structure 508

12.3 Disk Attachment 509

12.4 Disk Scheduling 510

12.5 Disk Management 516

12.6 Swap-Space Management 520

Chapter 13 1/O Systems

13.1 Overview 555

13.2 I/O Hardware 556

13.3 Application I/O Interface 565

13.4 Kernel I/O Subsystem 571

13.5 TransformingI/O Requests to
Hardware Operations 578

12.7
12.8
12.9
12.10

13.6
13.7
13.8

RAID Structure 522
Stable-Storage Implementation 533
Tertiary-Storage Structure 534
Summary 543

Exercises 545

Bibliographical Notes 552

STREAMS 580
Performance 582
Summary 585

Exercises 586
Bibliographical Notes 588

PART SIX H PROTECTION AND SECURITY
Chapter 14 System Protection

14.1 Goals of Protection 591 14.7 Revocation of Access Rights 606
14.2 Principles of Protection 592 14.8 Capability-Based Systems 607
14.3 Domain of Protection 593 149 Language-Based Protection 610
14.4 Access Matrix 598 1410 Summary 615

14.5 Implementation of Access Matrix 602 Exercises 616

14.6 Access Control 605 Bibliographical Notes 618

Chapter 15 System Security

15.1 The Security Problem 621 15.8 Computer-Security

15.2 Program Threats 625 Classifications 662

15.3 System and Network Threats 633 15.9 An Example: Windows XP 664
15.4 Cryptography as a Security Tool 638 15.10 Summary 665

15.5 User Authentication 649 Exercises 666

15.6 Implementing Security Defenses 654 Bibliographical Notes 667

15.7 Firewalling to Protect Systems and
Networks 661

PART SEVEN B DISTRIBUTED SYSTEMS
Chapter 16 Distributed Operating Systems

16.1 Motivation 673 16.7 Robustness 694
16.2 Types of Network- 16.8 Design Issues 697
based Operating Systems 675 16.9 An Example: Networking 699
16.3 Network Structure 679 16.10 Summary 701
16.4 Network Topology 683 Exercises 701
16.5 Communication Structure 684 Bibliographical Notes 703

16.6 Communication Protocols 690

Chapter 17 Distributed File Systems

17.1 Background 705 17.6 An Example: AFS 718
17.2 Naming and Transparency 707 17.7 Summary 723

17.3 Remote File Access 710 Exercises 724

17.4 Stateful versus Stateless Service 715 Bibliographical Notes 725

17.5 File Replication 716

Chapter 18 Distributed Synchronization

18.1 Event Ordering 727 18.6 Election Algorithms 747
18.2 Mutual Exclusion 730 18.7 Reaching Agreement 750
18.3 Atomicity 733 18.8 Summary 752
18.4 Concurrency Control 736 Exercises 753

18.5 Deadlock Handling 740 Bibliographical Notes 754

PART EIGHT MW SPECIAL PURPOSE SYSTEMS
Chapter 19 Real-Time Systems

19.1 Overview 759 19.5 Real-Time CPU Scheduling 768
19.2 System Characteristics 760 19.6 An Example: VxWorks 5.x 774
19.3 Features of Real-Time Kernels 762 19.7 Summary 776
19.4 Implementing Real-Time Operating Exercises 777

Systems 764 Bibliographical Notes 777

Chapter 20 Multimedia Systems

20.1 WhatIs Multimedia? 779 20.6 Network Management 789
20.2 Compression 782 20.7 An Example: CineBlitz 792
20.3 Requirements of Multimedia 20.8 Summary 795

Kernels 784 Exercises 795
20.4 CPU Scheduling 786 Bibliographical Notes 797

20.5 Disk Scheduling 787

PART NINE B CASE STUDIES
Chapter 21 The Linux System

21.1 Linux History 801 21.8 Input and Output 834

21.2 Design Principles 806 21.9 Interprocess Communication 837
21.3 Kernel Modules 809 21.10 Network Structure 838

21.4 Process Management 812 21.11 Security 840

21.5 Scheduling 815 21.12 Summary 843

21.6 Memory Management 820 Exercises 844

21.7 File Systems 828 Bibliographical Notes 845

Chapter22 Windows XP

22.1 History 847 22.6 Networking 886

22.2 Design Principles 849 22.7 Programimer Interface 892
22.3 System Components 851 22.8 Summary 900

224 Environmental Subsystems 874 Exercises 900

225 File System 878 Bibliographical Notes 901

Chapter 23 Influential Operating Systems

23.1 Feature Migration 903 239 IBM OS/360 915

23.2 Barly Systems 904 23.10 TOPS-20 917

23.3 Atlas 911 23.11 CP/Mand MS/DOS 917

23.4 XDS-940 912. 23.12 Macintosh Operating System and
23.5 THE 913 Windows 918

23.6 RC 4000 913 23.13 Mach 919

23.7 CTSS 914 23.14 Other Systems 920

23.8 MULTICS 915 Exercises 921

Xix

XX

Chapter A BSD UNIX

Al UNIX History 1 A.7 Tile System 25

A.2 Design Principles 6 A8 1/OSystem 32

A.3 Programmer Interface 8 A9 Interprocess Communication
A.4 User Interface 15 A.10 Summary 40

A.5 Process Management 18 Exercises 41

A.6 Memory Management 22 Bibliographical Notes 42

Appendix B The Mach System

B.1 History of the Mach System 1 B.7 Programmer Interface 23
B.2 Design Principles 3 B.8 Summary 24

B.3 System Components 4 Exercises 25

B.4 Process Management 7 Bibliographical Notes 26
B.5 Interprocess Communication 13 Credits 27

B.6 Memory Management 18

Appendix C Windows 2000

C.1 History 1 C.6 Networking 28

C.2 Design Principles 2 C.7 Programmer Interface 33
C.3 System Components 3 C.8 Summary 40

C.4 Environmental Subsystems 19 Exercises 40

C.5 File System 22 Bibliographical Notes 41

Bibliography 923
Credits 941

Index 943

35

An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating systemis large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.

CHAPTER

An cperzting systent is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, 1/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter,
we provide a general overview of the major components of an operating
system.

» To provide a grand tour of the major components of operating systems.
@ To describe the basic organization of computer systems.

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into

3

Chapter 1

user user user user
1 2 3 o n
compiler assembler text editor P database
system

system and application programs

operating system

computer hardware

Figure 1.1 Abstract view of the components of a computer system.

four components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).

£ {CPY), the memory, and the
in o e'fices—promdes the basic computing resources for the
system. The ar : ms—such as word processors, spreadsheets,
compilers, and Web b1owsers-—defme the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for one user
to monopolize its resources. The goal is to maximize the work (or play) that
the user is pelfonmno In this case, the operating system is designed mostly
for e of use, with some attention paid to performance and none paid
to resour: zation—how various hardware and software resources are
shared. Performance is, of course, important to the user; but such systems

i)

are optimized for the single-user experience rather than the requirements of
multiple users.

sie or a
i - Other users are accessing the same computel through other
telmmals These users share resources and may exchange mformatlon The
operating system in such cases is designed to maximize resource utilization—
to assure that all available CPU time, memory, and I/0 are used efficiently and
that no individual user takes more than her fair share.

In still other cases, users sit at weoriksiations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per unit of battery
life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a resouzce alliocatcr. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, 1/0O devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A conircl program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of 1/0 devices.

1.1.3 Defining Operating Systems

We have looked at the operating system’s role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user

1.2

Chapter1 zodocon

STORAGE DEFINITIONS AND NOTATION

A 7 is the basic unit of computer storage. It can contain one of two values,
zero and one. All other storage in a computer is based on collections of bits.
Given enough bits, it is amazing how many things a computer can represent:
numbers, letters, images, movies, sounds, documents, and programs, to name
a few. A >z is 8 bits, and on most computers it is the smallest convenient
chunk of storage. For example, most computers don’t have an instruction
to move a bit but do have one to move a byte. A less common term is

-+, which is a given computer architecture’s native storage unit. A word is
generally made up of one or more bytes. For example, a computer may have
instructions to move 64-bit (8-byte) words.

A Kkilobyte, or KB, is 1,024 bytes; a megabyte, or MB, is 1,0242 bytes; and
a gigabyte, or GB, is 1,024% bytes. Computer manufacturers often round off
these numbers and say that a megabyte is 1 million bytes and a gigabyte is 1
billion bytes.

problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
developed. These programs require certain common operations, such as those
controlling the I/O devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

Inaddition, wehaveno universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order “the operating system.” The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. A more common
definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called
the (2Tl (Alono with the kernel, there are two other types of programs:
§VIIETE DUCETEN: Wthh are associated with the operating system but are not
palt of the kernel, and omiicefion woogrezns, which include all programs not
associated with the operation of the system.)

The matter of what constitutes an operating system has become increas-
ingly important. In 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented application vendors from
competing. For example, a Web browser was an integral part of the operating
systems. As a result, Microsoft was found guilty of using its operating-system
monopoly to limit competition.

Before we can explore the details of how computer systems operate, we need
general knowledge of the structure of a computer system. In this section,
we look at several parts of this structure. The section is mostly concerned

1.2 Computer-System Organiz

THE STUDY OF OPERATING SYSTEMS

There has never been a more interesting time to study operating systems, and
it has never been easier. The open-source movement has overtaken operating
systems, causing many of them to be made available in both source and binary
(executable) format. This list includes Linux, BSD UNIX, Solaris, and part of
Mac OS X. The availability of source code allows us to study operating systems
from the inside out. Questions that previously could only be answered by
looking at documentation or the behavior of an operating system can now be
answered by examining the code itself.

In addition, the rise of virtualization as a mainstream (and frequently free)
computer function makes it possible to run many operating systems on top of
one core system. For example, VMware (http://www.vmware. com) provides
a free “player” on which hundreds of free “virtual appliances” can run. Using
this method, students can try out hundreds of operating systems within their
existing operating systems at no cost.

Operating systems that are no longer commercially viable have been
open-sourced as well, enabling us to study how systems operated in a
time of fewer CPU, memory, and storage resources. An extensive but not
complete list of open-source operating-system projects is available from
http://dmoz.org/Computers/Software/Operating Systems/Open_Source/.
Simulators of specific hardware are also available in some cases, allowing
the operating system to run on “native” hardware, all within the confines
of a modern computer and modern operating system. For example, a
DECSYSTEM-20 simulator running on Mac OS X can boot TOPS-20, load the
source tapes, and modify and compile a new TOPS-20 kernel. An interested
student can search the Internet to find the original papers that describe the
operating system and the original manuals.

The advent of open-source operating systems also makes it easy to make
the move from student to operating-system developer. With some knowledge,
some effort, and an Internet connection, a student can even create a new
operating-system distribution! Just a few years, ago it was difficult or
impossible to get access to source code. Now that access is limited only
by how much time and disk space a student has.

with computer-system organization, so you can skim or skip it if you already
understand the concepts.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CPU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
amemory controller is provided whose function is to synchronize access to the
memory.

For a computer to start running—for instance, when it is powered
up or rebooted—it needs to have an initial program to run. This initial

Chapter 1 Inircduciion

mouse keyboard printer monitor

dISkS on-line
o R S

disk USB controller graphics

cPU controller adapter

memory

Figure 1.2 A modern computer system.

program, or -oCisiran - =, tends to be simple. Typically, it is stored
in read-only memory (Z214) or electrically erasable pr001 ammable read-only
memory (Z=772C14), known by the general term “rir v
hardware. It initializes all aspects of the system, flom CPU registers to device
controllers to memory contents. The bootstrap program must know how toload
the operating system and how to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating-
system kernel. The operating system then starts executing the first process,
such as “init,” and waits for some event to occur.

The occurrence of an event is usually signaled by an Zrtzz=ut from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may tngger an mterlupt by executing a special operation called a etz 2210
(also called a znoniicr call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed locatlon usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first hundred or so locations). These locations hold the addresses
of the interrupt service routines for the various devices. This array, or = iezru5%
vecior, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for

CPU user
process
executing P U W

/O interrupt b
processing

110 idle _ R e
device |
transferring S | R

1o} transfer /O transfer
request done request done

Figure 1.3 Interrupt time line for a single process doing output.

the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

The CPU can load instructions only from memory, so any programs to run must
be stored there. General- -purpose computers run most of their programs from

rewriteable memory, called main memory (also called === elopeetiatatalosk r ety
or RAM). Main memory commonly is 1mplemented in a semiconductor
technology called 7amic rancom-access memncry (2RALS. Computers use

other forms of memory as well. Because the read-only mem01y (ROM) cannot
be changed, only static programs are stored there. The immutability of ROM
is of use in game cartridges. EEPROM cannot be changed frequently and so
contains mostly static programs. For example, smartphones have EEPROM to
store their factory-installed programs.

All forms of memory provide an array of words. Each word has its
own address. Interaction is achieved through a sequence of load or store
instructions to specific memory addresses. The load instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of a register to main memory. Aside from explicit
loads and stores, the CPU automatically loads instructions from main memory
for execution.

A typical instruction—execution cycle, as executed on a system with a 7o
Hewmarn architecture, first fetches an instruction from memory and stores
that instruction in the ‘=strucizcon registzr. The instruction is then decoded
and may cause operands to be fetched flOD’l memory and stored in some

10

Chapter1 inirocu

internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other
means) or what they are for (instructions or data). Accordingly, we can ignore
how a memory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:

1. Main memory is usually too small to store all needed programs and data
permanently.

N

Main memory is a volatile storage device that loses its contents when
power is turned off or otherwise lost.

Thus, most computer systems provide seconcary storage as an extension
of main memory. The main requirement for secondaly storage is that it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage for both programs and data. Most programs (system and
application) are stored on a disk until they are loaded into memory. Many
programs then use the disk as both the source and the destination of their
processing. Hence, the proper management of disk storage is of central
importance to a computer system, as we discuss in Chapter 12.

In a larger sense, however, the storage structure that we have described —
consisting of registers, main memory, and magnetic disks—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and holding that datum until it is retrieved at a later time. The main
differences among the various storage systems lie in speed, cost, size, and
volatility.

The wide variety of storage systems in a computer system can be organized
in a hierarchy (Figure 1.4) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit
generally decreases, whereas the access time generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the slower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and s Luctor memery have become faster and
cheaper. The top four levels of mem01y in Figure 1.4 may be constructed using
semiconductor memory.

In addition to differing in speed and cost, the various storage systems
are either volatile or nonvolatﬂe As mentioned earlier, volatiie storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile sicrage for safekeepmo In the hierarchy shown in Figure 1.4, the
storage systems above the electronic disk are volatile, whereas those below

1.3 clure 15
CPUq CPU; CPU,
registers registers registers
cache cache cache
memory

Figure 1.6 Symmetric multiprocessing architecture.

Solaris. The benefit of this model is that many processes can run simultaneously
—N processes can run if there are N CPUs—without causing a significant
deterioration of performance. However, we must carefully control I/0 to
ensure that the data reach the appropriate processor. Also, since the CPUs
are separate, one may be sitting idle while another is overloaded, resulting in
inefficiencies. These inefficiencies can be avoided if the processors share certain
data structures. A multiprocessor system of this form will allow processes and
resources—such as memory—to be shared dynamically among the various
processors and can lower the variance among the processors. Such a system
must be written carefully, as we shall see in Chapter 6. Virtually all modern
operating systems—including Windows, Windows XP, Mac OS X, and Linux
—now provide support for SMP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun’s operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

Multiprocessing adds CPUs to increase computing power. If the CPU has an
integrated memory controller, then adding CPUs can also increase the amount
of memory addressable in the system. Either way, multiprocessing can cause
a system to change its memory access model from uniform memory access
(Ur/4) to non-uniform memory access (I Ui44). UMA is defined as the situation
in which access to any RAM from any CPU takes the same amount of time. With
NUMA, some parts of memory may take longer to access than other parts,
creating a performance penalty. Operating systems can minimize the NUMA
penalty through resource management, as discussed in Section 9.5.4.

A recent trend in CPU design is to include multiple computing <crze on
a single chip. In essence, these are multiprocessor chips. They can be more
efficient than multiple chips with single cores because on-chip communication
is faster than between-chip communication. In addition, one chip with multiple
cores uses significantly less power than multiple single-core chips. As a result,
multicore systems are especially well suited for server systems such as database
and Web servers.

16

Chapter 1 Inivo

CPU corey CPU core;
registers registers
cache cache

T

memory

Figure 1.7 A dual-core design with two cores placed on the same chip.

In Figure 1.7, we show a dual-core design with two cores on the same
chip. In this design, each core has its own register set as well as its own local
cache; other designs might use a shared cache or a combination of local and
shared caches. Aside from architectural considerations, such as cache, memory,
and bus contention, these multicore CPUs appear to the operating system
as N standard processors. This tendency puts pressure on operating system
designers—and application programmers—to make use of those CPUs.

Fmally, slazceserversare arecent developmentin which multiple processor
boards, 1/0 boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, these servers consist of multiple
independent multiprocessor systems.

1.3.3 Clustered Systems

Another type of multiple-CPU system is the <luzterec sysizm. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems—or
nodes—joined together. The definition of the term clustered is not concrete;
many commercial packages wrestle with what a clustered system is and why
one form is better than another. The generally accepted defmmon is that clus-
tered computers share storage and are closely linked via a ez nelwork
{L£F; (as described in Sectlon 1.10) or a faster 1nterconnect such as InfmlBand

Clustering is usually used to provide high-zvailzbility service; that is,
service will Con’tmue even if one or more systems in the cluster fail. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.

1.3 Computer-System Archifecture 17

BEOWULF CLUSTERS

Beowulf clusters are designed for solving high-performance computing
tasks. These clusters are built using commodity hardware—such as personal
computers—that are connected via a simple local area network. Interestingly,
a Beowulf cluster uses no one specific software package but rather consists
of a set of open-source software libraries that allow the computing nodes
in the cluster to communicate with one another. Thus, there are a variety of
approaches for constructing a Beowulf cluster, although Beowulf computing
nodes typically run the Linux operating system. Since Beowulf clusters
require no special hardware and operate using open-source software that
is freely available, they offer a low-cost strategy for building a high-
performance computing cluster. In fact, some Beowulf clusters built from
collections of discarded personal computers are using hundreds of computing
nodes to solve computationally expensive problems in scientific computing.

J

irtg, one machine is in aci-standby mode while the other is
running the apphcatlons The hot-standby host machine does nothing but
momt01 the active server. If that server fails, the hot-standby host becomes the
active server. In svmniziric mode, two or more hosts are running apphcatlons
and are monitoring each other. This mode is obviously more eff1c1ent, as it uses
all of the available hardware. It does require that more than one application be
available to run.

As a cluster consists of several computer systems connected via a network,
clusters may also be used to provide High 5

Clusteuncr can be structured asymmetrically or symmetrically. In zej-

-performance compuling environ-
ments. Such systems can supply swmﬁcantly greater Computatlonal power
than single-processor or even SMP systems because they are capable of running
an application concurrently on all computers in the cluster. However, appli—
cations must be written spec1f1ca11y to take advantage of the cluster by using
a technique known as zarall o, which consists of dividing a program
into separate components that run in parallel on individual Computels in the
cluster. Typically, these applications are designed so that once each computing
node in the cluster has solved its portion of the problem, the results from all
the nodes are combined into a final solution.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Real Application
Cluster is a version of Oracle’s database that has been designed to run on
a parallel cluster. Each machine runs Oracle, and a layer of software tracks
access to the shared disk. Each machine has full access to all data in the
database. To provide this shared access to data, the system must also supply
access control and locking to ensure that no confhctma opel atlons occur. This
function, commonly known asa cisiri] ‘ 7 (DL, is included
in some cluster technology.

18 Chapter1 lnirscuction

interconnect interconnect
computer computer computer

y

storage area
network
___/

Figure 1.8 General structure of a clustered system.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these 1mplovements are made possible by siocrage-area
neiworke (S8A1s}, as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. Ina database cluster, dozens of hosts can share the same database, greatly
increasing performance and reliability. Figure 1.8 depicts the general structure

of a clustered system.

1.4

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability
to multiprogram. A single program cannot, in general, keep either the CPU
or the 1I/0 devices busy at all times. Single users frequently have multiple
programs running. I/ : ingincreases CPU utilization by organizing
]obs (code and data) so that the CPU always has one to execute.

The idea is as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.9). Since, in oenelal main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the isb zool.
This pool consists of all processes residing on disk awaiting allocation of main
memory.

The set of jobs in memory can be a subset of the jobs kept in the job pool.
The operating system picks and begins to execute one of the jobs in memory.
Eventually, the job may have to wait for some task, such as an 1/0 operation,

1.4 19
0
operating system
job 1
job2
job 3
job 4
512M

Figure 1.9 Memory layout for a multiprogramming system.

to complete. In a non-multiprogrammed system, the CPU would sit idle. In
a multiprogrammed system, the operating system simply switches to, and
executes, another job. When that job needs to wait, the CPU is switched to
another job, and so on. Eventually, the first job finishes waiting and gets the
CPU back. As long as at least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Timie sharing ~g) is a logical extension of
multiprogramming. In time- sharmCr systems, the CPU executes multlple jobs
by switching among them but the sw1tches occur so frequently that the users
can interact with each procrl am while itis runmng

Time sharing requires an irmferactiv »
which provides d11ect communication between the user and the system The
user gives instructions to the operating system or to a program directly, using a
input device such as a keyboard or a mouse, and waits for immediate results on
an output device. Accordingly, the zegponse e should be short—typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only alittle CPU time is needed for each user. As the system switches
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at least one separate program in memory. A program loaded into

O

20

1.5

y

Chapter1 Iniroduction

memory and executing is called a srocess. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform I/0.
I/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive 1/0
typically runs at “people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user’s typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CPU sit idle as this interactive input takes place, the operating system will
rapidly switch the CPU to the program of some other user.

Time sharing and multiprogramming require that several jobs be kept
simultaneously in memory. If several jobs are ready to be brought into memory,
and if there is not enough room for all of them then the system must choose
¢, which is discussed in
Chapter 5. When the operating system selects a]ob flom the job pool, it loads
thatjob into memory for execution. Having several programs in memory at the
same time requires some form of memory management, which is covered in
Chapters 8 and 9. In addition, if several jobs are 1eady to run at the same time,

which is discussed in Chapter 5. Flnally, running multiple]obs concurrentIy
requires that their ability to affect one another be limited in all phases of the
operating system, including process scheduling, disk storage, and memory
management. These considel ations are dlscussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, Wthh is sometimes accomplished through svwawzing, where
processes are swapped in and out of maln memory to the disk. Amore common
method for achieving this goal is virfuzal memory, a technique that allows
thep_executlon of a process that is not completely in memory (Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memazy. FLuthel, 1t
abstracts main memoryintoa laroe uniform array of stor age, separating lcgical
memcry as viewed by the user flom physical memory. Thls arrangement f1ees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide a file system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

s S A A R R

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no 1/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt
or a trap. A trap (or an exc 1) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service

P BN e e O nei O P PO Sl [P —]

I

ions 21

be performed. The interrupt-driven nature of an operating system defines
that system’s general structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a
user program could cause problems only for the one program running. With
sharing, many processes could be adversely affected by a bug in one program.
For example, if a process gets stuck in an infinite loop, this loop could prevent
the correct operation of many other processes. More subtle errors can occur
in a multiprogramming system, where one erroneous program might modify
another program, the data of another program, or even the operating system
itself.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or all output must be suspect. A properly
designed operating system must ensure that an incorrect (or mahc1ous)
program cannot cause other ploorams to execute mcorrecﬂy

g

K'\‘,v

~

1.5.1 Dual-Mode Operation ~ R

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that allows us to differentiate among various modes of
execution.

ST @ e T o a

At the very least, we need two separate = motee of operation: wser moce
and kernel mode (also called s VISOT TGGE, SYSIEm TMGOE, OF |

moce). Abit, called the mode 52t is added to the hardware of the compute1 to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are able
to distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is

- executing on behalf of a user application, the systemis in user mode. However,

~when a user application requests a service from the operating system (via a
“system call), it must transition from user to kernel mode to fulfill the request.
This is shown in Figure 1.10. As we shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

user process

user mode
user process executing H calls system call }) return from systemn call (mode bit = 1)
e \ /
Y L
- ay y -
Sk | trap return
- | feme mode bit = 0 mode bit = 1

P kernel mode
execute system call (mode bit = 0)

SLEDL o Figure 1.10 Transition from user to kernel mode.

22 Chapter 1 In:

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this pr otection by des1gnatmg some of the machine instructions that
2 ineirvczons. The hardware allows privileged

. instructions to be executed only in kernel mode If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
- the instruction but rather treats it as illegal and traps it to the operating system.
N) The instruction to switch to kernel mode is an example of a privileged
C S0 T ipstruction. Some other examples include I/0 control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.
R T We can now see the life cycle of instruction execution in a computer system.
Initial control resides in the operating system, where instructions are executed
in kernel mode. When control is given to a user application, the mode is set to
user mode. Eventually, control is switched back to the operating system via an
interrupt, a trap, or a system call.

System calls provide the means for a user program to ask the operating

system to perform tasks reserved for the ~operating system on the user

on l:he functlonahty provided by the underlying processor. In all forms itis the
method used by a process to request action by the operating system. A system
call usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
3 (such as the MIPS R2000 family) have a specific syscall instruction.
- When a system call is executed, it is treated by the hardware as a software
~ 7 Tinterrupt. Control passes through the interrupt vector to a service routine in
~Z% the operatmo system, and the que bit is set to kernel mode. The systemn-
‘ call service routine is a part of the operating system. The kernel examines
- =Z7 - = the interrupting instruction to determine what system call has occurred; a
- _ parameter indicates what type of service the user program is requesting.
© 7 Additional information needed for the request may be passed in registers,
on the stack, or in memory (with pointers to the memory locations passed in
- registers). The kernel verifies that the parameters are correct and legal, executes

- therequest, and returns control to the instruction following the system call. We
~ describe system calls more fully in Section 2.3.

Lo T The lack of a hardware-supported dual mode can cause serious shortcom-

’ ings in an operating system. For instance, MS-DOS was written for the Intel

8088 architecture, which has no mode bit and therefore no dual mode. A user

program running awry can wipe out the operating system by writing over it

with data; and multiple programs are able to write to a device at the same time,

with potentially disastrous results. Recent versions of the Intel CPU do provide

dual-mode operation. Accordingly, most contemporary operating systems—

such as Microsoft Vista and Windows XP, as well as Unix, Linux, and Solaris

1.6

23

—take advantage of this dual-mode feature and provide greater protection for
the operating system.

Once hardware protection is in place, it detects errors that violate modes.
These errors are normally handled by the operating system. If a user program
fails in some way—such as by making an attempt either to execute an illegal
instruction or to access memory that is not in the user’s address space—then
the hardware traps to the operating system. The trap transfers control through
the interrupt vector to the operating system, just as an interrupt does. When
a program error occurs, the operating system must terminate the program
abnormally. This situation is handled by the same code as a user-requested
abnormal termination. Anappropriate error message is given, and the memory
of the program may be dumped. The memory dump is usually written to a
file so that the user or programmer can examine it and perhaps correct it and
restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control over the CPU.
We cannot allow a user program to get stuck in an infinite loop or to fail
to call system services and never return control to the operating system. To

‘accomplish this goal, we can use a cimer, A timer can be set to interrupt

1/60 second) or variable (for example from 1 millisecond to 1 second). A
vazizole Himer is generally implemented by a fixed-rate clock and a counter.
The operatmo system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal

error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simple technique is to initialize a counter with the amount of time thata
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. As long as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

A program does nothing unless its instructions are executed by a CPU. A
program in execution, as mentioned, is a process. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
individual user on a PC is a process. A system task, such as sending output
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be ajob or a time-shared program, but later you will learn

24

IR A
, -

-

Chapter1 Inmfrod

that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrently.

A process needs certain resources—including CPU time, memory, files,

and 1/0 devices—to accomplish its task. These resources are either given to
the process when it is created or allocated to it while it is running. In add1t10n
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of a terminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display

on the terminal the desired information. When the process terminates, the

-2 operating system will reclaim any reusable resources.

We emphasize that a program by itself is not a process; a program is a
" passive entity, like the contents of a file stored on disk, whereas a process is an

active entlty A'smcrle threaded p1 ocess has one program counter spec1fy1nor the

of such a process must be sequent1al The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently —
by multiplexing on a single CPU, for example. S

The operating system is responsible for the following activities in connec-
tion with process manacrement.

¢ Scheduling processes and threads on the CPUs

© (reating and deleting both user and system processes
© Suspending and resuming processes

o Providing mechanisms for process synchronization

¢ Providing mechanisms for process communication

We discuss process-management techniques in Chapters 3 through 6.

As we discussed in Section 1.2.2, the main memory is central to the operation
of amodern computer system. Main memory is a large array of words or bytes,
ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory is a repository of quickly accessible data shared
by the CPU and 1/0 devices. The central processor reads instructions from main

1.8

ent 25

memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a von Neumann architecture).
As noted earlier, the main memory is generally the only large storage device
that the CPU is able to address and access directly. For example, for the CPU to
process data from disk, those data must first be transferred to main memory
by CPU-generated 1/0 calls. In the same way, instructions must be in memory
for the CPU to execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. As the program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

o Keeping track of which parts of memory are currently being used and by
whom

(@]

Deciding which processes (or parts thereof) and data to move into and out
of memory

¢ Allocating and deallocating memory space as needed

Memory-management techniques are discussed in Chapters 8 and 9.

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the le. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
also has its own unique characteristics. These properties include access speed,
capacity, data-transfer rate, and access method (sequential or random).

26

Chapter 1

Afileisacollection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of a file is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass-storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use.
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

¢ Creating and deleting files

¢ Creating and deleting directories to organize files

¢ Supporting primitives for manipulating files and directories
© Mapping files onto secondary storage

¢ Backing up files on stable (nonvolatile) storage media

File-management techniques are discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters—are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating system is
responsible for the following activities in connection with disk management:

Free-space management
Storage allocation

> Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
Magnetic tape dri ives and thelr tapes and CD and DVD drlves and platters are
typ1cal o
between v/

27

Tertiary storage is not crucial to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management are discussed
in Chapter 12.

1.8.3 Caching

£ ‘ng is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster stmage system —the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware.
For instance, most systems have an instruction cache to hold the instructions
expected to be executed next. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operatmo system.

Because caches have limited size, ent is an important
design problem Careful selection of the Cache size and of a replacement policy
can result in greatly increased performance. Figure 1.11 compares storage
performance in large workstations and small servers. Various replacement
algorithms for software-controlled caches are discussed in Chapter 9.

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB <16 MB <64 GB > 100 GB
Implementation custom memory with | on-chip or off-chip] CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-05 05-25 80-250 5,000.000

Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20-150

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape

Figure 1.11 Performance of various levels of storage.

28

Chapter 1 Inirocuction

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory. In addition, electronic RAM disks (also known as sclid-giate dislke)
may be used for high-speed storage that is accessed through the file-system
interface. The bulk of secondary storage is on magnetic disks. The magnetic-
disk storage, in turn, is often backed up onto magnetic tapes or removable
disks to protect against data loss in case of a hard-disk failure. Some systems
automatically archive old file data from secondary storage to tertiary storage,
such as tape jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
tocCrUand and registers is usually a hardware function, with no operating-system

intervention. In contrast, transfer of data from disk to memory is usually

controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that is to
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an I/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.12). Once the increment takes place in the internal
register, the value of A differs in the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CPU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated

_value of A.
The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also

contains a local cache (Figure 1. 6) In such an environment, a copy of A may

exist simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache

hardware
register

main
memaory

magnetic
disk

cache

Figure 1.12 Migration of integer A from disk to register.

1.9

29

is 11nmed1atcly reflected in all other caches where A resides. This situation is
called cache colierericy, and it is usually a hardware problem (handled below
the operating-system level)

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and updated concurrently, some distributed systems ensure
that, when a replica is updated in one place, all other replicas are brought up
to date as soon as possible. There are various ways to achieve this guarantee,
as we discuss in Chapter 17.

1.8.4 /O Systems

One of the purposes of an operating system is to hide the peculiarities of specific

_hardware devices from the user. For example, in UNIX, the peculiarities of 1/0

devices are hidden from the bulk of the operating system itself by the /O
subsystem. The 1/0 subsystem consists of several components:

© A memory-management component that includes buffering, caching, and
spooling

¢ A general device-driver interface

> Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlers and device drivers are
used in the construction of efficient I/O subsystems. In Chapter 13, we discuss
how the 1/0 subsystem interfaces to the other system components, manages
devices, transfers data, and detects I/O completion.

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CPU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
provide means to specify the controls to be imposed and means to enforce the
controls.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that is

30

1.10

Chapter 1

malfunctioning. Furthermore, an unprotected resource cannot defend against
use (or misuse) by an unauthorized or incompetent user. A protection-oriented
system provides a means to distinguish between authorized and unauthorized
usage, as we discuss in Chapter 14.

A system can have adequate protection but still be prone to failure and
allow inappropriate access. Consider a user whose authentication information
(her means of identifying herself to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
the job of cecurity to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
service attacks (which use all of a system’s resources and so keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is considered an operating-
system function on some systems, while other systems leave the prevention to
policy or additional software. Due to the alarming rise in security incidents,
operating-system security features represent a fast-growing area of research
and implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
all its users. Most operatmcr systems maintain a list of user names and
associated - wfifers (user TDs). In Windows Vista parlance, this is a

0 ' . These numerical IDs are unique, one per user. When a user
Jogs in to the system the authentication stage determines the approprlate user
ID for the user. That user ID is associated with all of the user’s processes and
threads. When an ID needs to be user readable, it is translated back to the user
name via the user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of a file on a UNIX system may be
allowed to issue all operations on that file, whereas a selected set of users may
only be allowed to read the file. To accomplish this, we need to define a group
name and the set of users belonging to that group. Group functionality can
be 1mplemented asa system—w1de hst of group names and grcus ioeniifers,
A user can be in one or more groups, depending on operating-system design
decisions. The user’s group IDs are also included in every assoc:lated process
and thread.

In the course of normal use of a system, the user ID and group ID for a user
are sufficient. However, a user sometimes needs to zsczlzte mrivileges to gain
extra permissions for an activity. The user may need access to a device that is
restricted, for example. Operating systems provide various methods to allow
privilege escalation. On UNIX, for example, the setuid attribute on a program
causes that program to run with the user ID of the owner of the file, rather than
the current user’s ID. The process runs with this =zctivz 715 until it turns off
the extra privileges or terminates.

A distributed system is a collection of physically separate, possibly heteroge-
neous, computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource

31

increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface’s device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS. The protocols
that create a distributed system can greatly affect that system’s utility and
popularlty
=tvrcilc, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating-
system support of protocols varies. Most operating systems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device—a network adapter, for example—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.
Networks are char acterlzed based on the distances between their nodes.
A local-area metwork (LAN, connects computers within a room, a floor,
or a building. A w AT usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
- continuing advent of new technologles brings about new forms of networks.
For example, a metropciitan-ares netvozk (AT could link buildings within
“a city. BlueTooth and 802.11 devices use wireless technology to commumcate
over a distance of several feet, in essence creating a smmail-zr2z netvoris such

as might be found in a home.

: The media to carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance

- and reliability.

- Some operating systems have taken the concept of networks and dis-
t11buted systems further than the notion of providing network connectivity. A
‘= is an operating system that provides features such
as file sharmo across the network and that includes a communication scheme
that allows d1ffe1 ent processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
systems communicate closely enough to provide the illusion that only a single
operating system controls the network.
We cover computer networks and distributed systems in Chapters 16

et

7 f

through 18. 7 RPRIPEE

e -

32

1.1

Chapter1 Irnirocducton

The discussion thus far has focused on the general-purpose computer systems
that we are all familiar with. There are, however, other classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1.11.1 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to DVDs and microwave ovens. They tend to have very specific tasks.
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Yet others are hardware devices
with application-specific integrated circuits (£5ICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as elements of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer—either a general-purpose computer or an embedded
system—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time sperating sysiems. A
real-time system is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must be done within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or a batch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design

111 &

of memory management for real-time computing. Finally, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1.11.2 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files as well as
conventional files. These data differ from conventional data in that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications in popular use today.
These include audio files such as MP3, DVD movies, video conferencing, and
short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may also include live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications,
describe how multimedia data differ from conventional data, and explain how
the nature of these data affects the design of operating systems that support
the requirements of multimedia systems.

1.11.3 Handheld Systems

Hemdleld systeme include personal digital assistants (PDAs), such as Palm
and Pocket-PCs, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica-
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have small amounts of memory, slow processors, and small
display screens. We take a look now at each of these limitations.

The amount of physical memory in a handheld depends on the device, but
typically it is somewhere between 1 MB and 1 GB. (Contrast this with a typical
PC or workstation, which may have several gigabytes of memory.) As a result,
the operating system and applications must manage memory efficiently. This
includes returning all allocated memory to the memory manager when the
memory is not being used. In Chapter 9, we explore virtual memory, which
allows developers to write programs that behave as if the system has more
memory than is physically available. Currently, not many handheld devices
use virtual memory techniques, so program developers must work within the
confines of limited physical memory.

34

112

Chapter1 Inirocu

A second issue of concern to developers of handheld devices is the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is /0.
Alack of physical space limits input methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing Web pages, must
be condensed into smaller d1splays One approach for d1sp1ay1ng the content
in Web pages is /=& clipsing, where only a small subset of a Web page is
delivered and d1splayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote access to e-mail and Web browsing. Cellular telephones
with connectivity to the Internet fall into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
first to download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link.

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
connections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the “typical office environment.” Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.

The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish :, which provide Web accessibility
to their internal servers. ompiizre are essentially terminals that
understand Web-based computing. Handheld computers can synchronize with

112 Computing Bnvircrnents 35
PCs to allow ve1y po1table use of company information. Handheld PDAs can
also connect to v retworie to use the company’s Web portal (as well as
the myriad othe1 Web resources).

Athome, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up Web pages and to run networks that include printers, client PCs,
and servers. Some homes even have Zirevwrzils to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch systems processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul-
ing technique is still in use on workstations and servers, but frequently the
processes are all owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user is working on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1.12.2 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have shifted
away from centralized system architecture. Terminals connected to centralized
systems are now being supplanted by PCs. Correspondingly, user-interface
functionality once handled directly by centralized systems is increasingly being
handled by PCs. As a result, many of today s systems act as server sysiciis
to satisfy requests generated by : gtems. This form of spec1ahzed
distributed system, CaHed a clieni-server system, has the general structure
depicted in Figure 1.13.

Server systems can be broadly categorized as compute servers and file
servers:

client ‘ ’ client { ‘ client } client

I I | network

server

Figure 1.13 General structure of a client—-server system.

36

Chapter1 Inircduciion

'+ systerm provides an interface to which a client can

¢ The comy

send a 1equest to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a system.

‘ . provides a file-system interface where clients can
create, up date read, and delete files. An example of such a system is a Web
server that delivers files to clients running Web browsers.

1.12.3 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, all nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

o When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

¢ A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to all other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peers in
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
several file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of all files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
many of the files are copyrighted (music, for example), and there are laws
governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play a role in the future of many services,
such as searching, file exchange, and e-mail.

1.13

113 O3 37

1.12.4 Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices, with workstations, handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity, provided by either
improved networking technology, optimized network implementation code,
or both.

The implementation of Web-based computmg has given rise to new
categories of devices, such as lcad balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted as Web clients, have evolved into Linux and Windows XP, which
can act as Web servers as well as clients. Generally, the Web has increased the
complexity of devices because their users require them to be Web-enabled.

The study of operating systems, as noted earlier, is made easier by the
availability of a vast numbe1 of open-source releases. Cpexn-
s are those made available in source-code format rather than as
compiled binary code. Linuxis the most famous open- source operating system,
while Microsoft Windows is a well-known example of the opposite closec-
ecurce approach. Starting with the source code allows the programmer to
produce binary code that can be executed on a system. Doing the opposite—
revayse en 1g the source code from the binaries—is quite a lot of work,
and useful items such as comments are never recovered. Learning operating
systems by examining the actual source code, rather than reading summaries of
that code, can be extremely useful. With the source code in hand, a student can
modify the operating system and then compile and run the code to try out those
changes, which is another excellent learning tool. This text includes projects
that involve modifying operating system source code, while also describing
algorithms at a high level to be sure all important operating system topics are
covered. Throughout the text, we provide pointers to examples of open-source
code for deeper study.

There are many benefits to open-source operating systems, including a
community of interested (and usually unpaid) programmers who contribute
to the code by helping to debug it, analyze it, provide support, and suggest
changes. Arguably, open-source Code is more secure than closed-source Code
because many more eyes are viewing the code. Certainly open-source code has
bugs, but open-source advocates argue that bugs tend to be found and fixed
faster owing to the number of people using and viewing the code. Companies
thatearnrevenue from selling their programs tend to be hesitant to open-source
their code, but Red Hat, SUSE, Sun, and a myriad of other companies are doing
just that and showing that commercial companies benefit, rather than suffer,
when they open-source their code. Revenue can be generated through support
contracts and the sale of hardware on which the software runs, for example.

38

Chapter1 inifrcau

1.13.1 History

In the early days of modern computing (that is, the 1950s), a great deal of
software was available in open-source format. The original hackers (computer
enthusiasts) at MIT’s Tech Model Railroad Club left their programs in drawers
for others to work on. “Homebrew” user groups exchanged code during their
meetings. Later, company-specific user groups, such as Digital Equipment
Corporation’s DEC, accepted contributions of source-code programs, collected
them onto tapes, and distributed the tapes to interested members.

Computer and software companies eventually sought to limit the use
of their software to authorized computers and paying customers. Releasing
only the binary files compiled from the source code, rather than the source
code itself, helped them to achieve this goal, as well as protecting their code
and their ideas from their competitors. Another issue involved copyrighted
material. Operating systems and other programs can limit the ability to play
back movies and mus1c or display ¢ electromc books to authorized computers.
Such copy protection or Digital Rights IMernagement (DRM) would not be
effective if the source code that implemented these limits were published.
Laws in many countries, including the U.S. Digital Millennium Copyright
Act (DMCA), make it illegal to reverse—engineer DRM code or otherwise try to
circumvent copy protection.

To counter the move to limit software use and redistribution, Richard
Stallman in 1983 started the GNU project to create a free, open-source UNIX-
compatible operating system. In 1985, he published the GNU Manifesto, which
argues that all software should be free and open-sourced. He also formed
the Free Scftware Foundaiion (FSF with the goal of encouraging the free
exchange of software source code and the free use of that software Rather than
copynoht its software, the FSF * ‘copylefts™ the software to encourage sharing
and improvement. The CU Ceneral Pullic Licenss (CPL) codifies copyleftmcr
and is a common license under which free software is released. Fundamentally,
GPL requires that the source code be distributed with any binaries and that any
changes made to the source code be released under the same GPL license.

1.13.2 Linux

As an example of an open-source operating system, consider GINU/Linui
The GNU project produced many UNIX-compatible tools, including compilers,
editors, and utilities, but never released a kernel. In 1991, a student in
Finland, Linus Torvalds, released a rudimentary UNIX-like kernel using the
GNU compilers and tools and invited contributions worldwide. The advent of
the Internet meant that anyone interested could download the source code,
modify it, and submit changes to Torvalds. Releasing updates once a week
allowed this so-called Linux operating system to grow rapidly, enhanced by
several thousand programmers.

The resul’rmcr GNU/Linux operating system has spawned hundreds of
unique <lsizibuiicng, or custom builds, of the system. Major distributions
include RedHat SUSE Fedora, Debian, Slackware, and Ubuntu. Distributions
vary in function, utility, installed applications, hardware support, user inter-
face, and purpose. For example, RedHat Enterprise Linux is geared to large
commercial use. PCLinuxOS is a LiveT I —an operating system that can be
booted and run from a CD-ROM without being installed on a system’s hard

05

Lsy

113 Cpen-B 39

disk. One variant of PCLinux0S, “PCLinux0S$ Supergamer DVD,” is a LiveDV D
thatincludes graphics drivers and games. A gamer can run it on any compatible
system simply by booting from the DVD. When the gamer is finished, a reboot
of the system resets it to its installed operating system.

Access to the Linux source code varies by release. Here, we consider
Ubuntu Linux. Ubuntu is a popular Linux distribution that comes in a variety
of types, including those tuned for desktops, servers, and students. Its founder
pays for the printing and mailing of DVDs containing the binary and source
code (which helps to make it popular). The following steps outline a way
to explore the Ubuntu kernel source code on systems that support the free
“VMware Player” tool:

o Download the player from http://www.vmware.com/download/player/
and install it on your system.

¢ Download a virtual machine containing Ubuntu. Hundreds of
“appliances”, or virtual machine images, pre-installed with oper-
ating systems and applications, are available from VMware at
http://www.vnware.com/appliances/.

¢ Boot the virtual machine within VMware Player.

¢ Getthesource code of the kernel release of interest, such as 2.6, by executing
wget http://www.kernel.org/pub/linux/kernel/v2.6/linux~
2.6.18.1.tar.bz2 within the Ubuntu virtual machine.

¢ Uncompress and untar the downloaded file via tar xjf linux-~
2.6.18.1.tar.bz2.

)

Explore the source code of the Ubuntu kernel, which is now in ./linux-
2.6.18.1.

For more about Linux, see Chapter 21. For more about virtual machines, see
Section 2.8.

1.13.3 BSD UNIX

AT VIR

327 Ul has a longer and more complicated history than Linux. It started in
1978 as a derivative of AT&T’s UNIX. Releases from the University of California
at Berkeley (UCB) came in source and binary form, but they were not open-
source because a license from AT&T was required. BSD UNIX’s development was
slowed by a lawsuit by AT&T, but eventually a fully functional, open-source
version, 4.4BSD-lite, was released in 1994.

Just as with Linux, there are many distributions of BSD UNIX, including
FreeBSD, NetBSD, OpenBSD, and DragonflyBsD. To explore the source code
of FreeBSD, simply download the virtual machine image of the version of
interest and boot it within VMware, as described above for Ubuntu Linux. The
source code comes with the distribution and is stored in /usr/src/. The kernel
source code is in /usr/src/sys. For example, to examine the virtual-memory
implementation code in the FreeBSD kernel, see the files in /usr/src/sys/vm.

Darwin, the core kernel component of MAC, is based on BSD
UNIX and is open-sourced as well. That source code is available from
http://www.opensource.apple.com/darwinsource/. Every MAC release

40

1.14

Chapter 1 ‘ol

has its open-source components posted at that site. The name of the
package that contains the kernel is “xnu.” The source code for MAC
kernel revision 1228 (the source code to MAC Leopard) can be found at
www.opensource.apple.com/darwinsource/tarballs/apsl/xnu-1228 tar.gz.
Apple also provides extensive developer tools, documentation, and support
athttp://connect.apple.com. For more information, see Appendix A.

1.13.4 Solaris

~

Zoizriz is the commercial UNIX-based operating system of Sun Microsystems.
Originally, Sun’s £ TS operating system was based on BSD UNIX. Sun moved
to AT&T’s System V UNIX as its base in 1991. In 2005, Sun open-sourced some
of the Solaris code, and over time, the company has added more and more to
that open-source code base. Unfortunately, not all of Solaris is open-sourced,
because some of the code is still owned by AT&T and other companies. However,
Solaris can be compiled from the open source and linked with binaries of the
close-sourced components, so it can still be explored, modified, compiled, and
tested.

The source codeis available fromhttp://opensolaris.org/os/downloads/.
Also available there are pre-compiled distributions based on the source code,
documentation, and discussion groups. It is not necessary to download the
entire source-code bundle from the site, because Sun allows visitors to explore
the source code on-line via a source code browser.

1.13.5 Utility

The free software movement is driving legions of programmers to create
thousands of open-source projects, including operating systems. Sites like
http://freshmeat.net/ and http://distrowatch.com/ provide portals to
many of these projects. Open-source projects enable students to use source
code as a learning tool. They can modify programs and test them, help find
and fix bugs, and otherwise explore mature, full-featured operating systems,
compilers, tools, user interfaces, and other types of programs. The availability
of source code for historic projects, such as Multics, can help students to
understand those projects and to build knowledge that will help in the
implementation of new projects.

GNU/Linux, BSD UNIX, and Solaris are all open-source operating sys-
tems, but each has its own goals, utility, licensing, and purpose. Sometimes
licenses are not mutually exclusive and cross-pollination occurs, allowing
rapid improvements in operating-system projects. For example, several major
components of Solaris have been ported to BSD UNIX. The advantages of free
software and open sourcing are likely to increase the number and quality of
open-source projects, leading to an increase in the number of individuals and
companies that use these projects.

An operating system is software that manages the computer hardware, as well
as providing an environment for application programs to run. Perhaps the

114 Summomary 41
most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do its job of executing programs, the programs must be
in main memory. Main memory is the only large storage area that the processor
can access directly. It is an array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually a volatile storage device that loses its contents when power is turned
off or lost. Most computer systems provide secondary storage as an extension
of main memory. Secondary storage provides a form of nonvolatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systems in a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,
but they are fast. As we move down the hierarchy, the cost per bit generally
decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor, while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run
independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be inmemory at the same time, thus ensuring
that the CPU always has a job to execute. Time-sharing systems are an exten-
sion of multiprogramming wherein CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion that each job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as I/O instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with each other.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system; this includes providing file systems for
representing files and directories and managing space on mass-storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection measures are mechanisms that
control the access of processes or users to the resources made available by the

42

Chapter 1 imtrocdt

computer system. Security measures are responsible for defending a computer
system from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client—server model or the peer-to-peer model. In a clustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical area to communicate, whereas
WANSs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANs.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well-defined, fixed-time constraints. Processing must be done
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements
of displaying or playing audio, video, or synchronized audio and video
streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of operating systems that include Web browsers
and networking and communication software as integral features.

The free software movementhas created thousands of open-source projects,
including operating systems. Because of these projects, students are able to use
source code as a learning tool. They can modify programs and test them,
help find and fix bugs, and otherwise explore mature, full-featured operating
systems, compilers, tools, user interfaces, and other types of programs.

GNU/Linux, BSD UNIX, and Solaris are all open-source operating systems.
The advantages of free software and open sourcing are likely to increase the
number and quality of open-source projects, leading to an increase in the
number of individuals and companies that use these projects.

1.1 How are network computers different from traditional personal com-
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

1.2 What network configuration would best suit the following environ-
ments?

a. A dormitory floor
b. A university campus

A state

& o

A nation

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

43

Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

Under what circumstances would a user be better off using a time-
sharing system rather than a PC or a single-user workstation?

List the four steps that are necessary to run a program on a completely
dedicated machine—a computer that is running only that program.

How does the distinction between kernel mode and user mode function
as a rudimentary form of protection (security) system?

In a multiprogramming and time-sharing environment, several users
share the system simultaneously. This situation can result in various
security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

What are the tradeoffs inherent in handheld computers?

Distinguish between the client—server and peer-to-peer models of
distributed systems.

Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.

What are the main differences between operating systems for mainframe
computers and personal computers?

Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

44

Chapter1 Infroa:

1.14

1.15

1.16

117

1.18

1.19

Clear memory.

C
d. Issue a trap instruction.

.“’

Turn off interrupts.

=

Modity entries in device-status table.
Switch from user to kernel mode.

2
h. AccessI/0 device.

Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a. Single-processor systems
b. Multiprocessor systems

c. Distributed systems

Identity several advantages and several disadvantages of open-source
operating systems. Include the types of people who would find each
aspect to be an advantage or a disadvantage.

How do clustered systems differ from multiprocessor systems? What is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

What is the main difficulty that a programmer must overcome in writing
an operating system for a real-time environment?

Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU’s execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are com-
plete?

c¢. The CPU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms
of interference are caused.

Identify which of the functionalities listed below need to be supported by
the operating system for (a) handheld devices and (b) real-time systems.

a. Batch programming
b. Virtual memory

c. Time sharing

1.20

1.21

1.22

1.23

1.25

1.26

Seroioss 45

Some CPUs provide for more than two modes of operation. What are
two possible uses of these multiple modes?

Define the essential properties of the following types of operating
systems:

a. Batch
b. Interactive
c. ~ Time sharing
d. Real time
Network
f. Parallel
g. Distributed

h. Clustered
i. Handheld

Describe the differences between symmetric and asymmetric multipro-
cessing. What are three advantages and one disadvantage of multipro-
cessor systems?

The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a. Mainframe or minicomputer systems
b. Workstations connected to servers

c. Handheld computers

What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?

Consider an SMP system similar to what is shown in Figure 1.6. [llustrate
with an example how data residing in memory could in fact have two
different values in each of the local caches.

Consider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

46

Chapter 1 nicozciion

Brookshear [2003] provides an overview of computer science in general.

An overview of the Linux operating system is presented in Bovet and
Cesati [2006]. Solomon and Russinovich [2000] give an overview of Microsoft
Windows and considerable technical detail about the system internals and
components. Russinovich and Solomon [2005] update this information to
Windows Server 2003 and Windows XP. McDougall and Mauro [2007] cover
the internals of the Solaris operating system. Mac OS X is presented at
http://www.apple.com/macosx. Mac OS X internals are discussed in Singh
[2007].

Coverage of peer-to-peer systems includes Parameswaran et al. [2001],
Gong [2002], Ripeanu et al. [2002], Agre [2003], Balakrishnan et al. [2003], and
Loo [2003]. A discussion of peer-to-peer file-sharing systems can be found in
Lee [2003]. Good coverage of cluster computing is provided by Buyya [1999].
Recentadvances in cluster computing are described by Ahmed [2000]. A survey
of issues relating to operating-system support for distributed systems can be
found in Tanenbaum and Van Renesse [1985].

Many general textbooks cover operating systems, including Stallings
[2000b], Nutt [2004], and Tanenbaum [2001].

Hamacher et al. [2002] describe computer organization, and McDougall
and Laudon [2006] discuss multicore processors. Hennessy and Patterson
[2007] provide coverage of I/O systems and buses, and of system archi-
tecture in general. Blaauw and Brooks [1997] describe details of the archi-
tecture of many computer systems, including several from IBM. Stokes
[2007] provides an illustrated introduction to microprocessors and computer
architecture.

Cache memories, including associative memory, are described and ana-
lyzed by Smith [1982]. That paper also includes an extensive bibliography on
the subject.

Discussions concerning magnetic-disk technology are presented by Freed-
man [1983] and by Harker et al. [1981]. Optical disks are covered by Kenville
[1982], Fujitani [1984], O'Leary and Kitts [1985], Gait [1988], and Olsen and
Kenley [1989]. Discussions of floppy disks are offered by Pechura and Schoeffler
[1983] and by Sarisky [1983]. General discussions concerning mass-storage
technology are offered by Chi [1982] and by Hoagland [1985].

Kurose and Ross [2005] and Tanenbaum [2003] provide general overviews
of computer networks. Fortier [1989] presents a detailed discussion of network-
ing hardware and software. Kozierok [2005] discuss TCP in detail. Mullender
[1993] provides an overview of distributed systems. Wolf [2003] discusses
recent developments in developing embedded systems. Issues related to hand-
held devices can be found in Myers and Beigl [2003] and Di Pietro and Mancini
[2003].

A full discussion of the history of open sourcing and its benefits and chal-
lenges is found in Raymond [1999]. The history of hacking is discussed in Levy
[1994]. The Free Software Foundation has published its philosophy on its Web
site: http://www.gnu.org/philosophy/free-software-for-freedom.html.
Detailed instructions on how to build the Ubuntu Linux kernel are on

Biblicgrashical Maotes 47
http://www.howtoforge.com/kernel_compilation_ubuntu. The open-source
components of MAC are available from http://developer.apple.com/open-
source/index.html.

Wikipedia (http://en.wikipedia.org/wiki/Richard_Stallman) has an
informative entry about Richard Stallman.

The source code of Multics is available at http://web.mit.edu/multics-
history/source/Multics_Internet_Server/Multics sources.html.

2.1

CHAPTER

An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices among
various algorithms and strategies.

We can view an operating system from several vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore all three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how
they are provided, how they are debugged, and what the various method-
ologies are for designing such systems. Finally, we describe how operating
systems are created and how a computer starts its operating system.

= To describe the services an operating system provides to users, processes,
and other systems.

@ To discuss the various ways of structuring an operating system.

> To explain how operating systems are installed and customized and how
they boot.

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The specific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming

49

50

Chapter2 =

the user.

user and other system programs
GUI batch command line
user interfaces
system calls
program (] file o resource .
" g ati ; accountin
execution operations systems commuriication allocation o 9
error protection
detection and
. security
services
operating system
hardware

Figure 2.1 A view of operating system services.

task easier. Figure 2.1 shows one view of the various operating-system services
and how they interrelate.

One set of operating-system services provides functions that are helpful to

User interface. Almost all operating systems have a =
This interface can take several forms. One is a ©Tracs commianc &
‘727, which uses text commands and a method for enter ing them
(say, a program to allow entering and editing of commands). Anothe1 is
a ceicn in cz, in which commands and directives to control those
commands are entered into ﬁles and those files are executed. Most
commeonly, a 2 » is used. Here, the interface
is a window system with a pomtmg dev1ce to direct 1/0O, choose from
menus, and make selections and a keyboard to enter text. Some systems
provide two or all three of these variations.

Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

I/0 operations. A running program may require I/O, which may involve a
file or an1/0 device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a display screen). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do 1/0.

File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finally, some programs include permissions management to
allow or deny access to files or directories based on file ownership. Many
operating systems provide a variety of file systems, sometimes to allow
personal choice, and sometimes to provide specific features or performance
characteristics.

2.1 ryices 51

Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through message passing, in which packets of
information are moved between processes by the operating system.

> Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CPU and memory hardware (such
as a memory error or a power failure), in 1/0 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CPU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Of course, there is variation in
how operating systems react to and correct errors. Debugging facilities can
greatly enhance the user’s and programmer’s abilities to use the system
efficiently.

Another set of operating-system functions exists not for helping the user
but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.

© Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of them.
Many different types of resources are managed by the operating system.
Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, whereas others (such asI/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, the jobs that must be executed, the number of
registers available, and other factors. There may also be routines to allocate
printers, modems, USB storage drives, and other peripheral devices.

Accounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

¢ Protection and security. The owners of information stored in a multiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
system itself. Protection involves ensuring that all access to system
resources is controlled. Security of the system from outsiders is also
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external 1/0 devices,

52

Chapter2 Zrystern Tomcizres

including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chain is only as strong as its weakest link.

We mentioned earlier that there are several ways for users to interface with
the operating system. Here, we discuss two fundamental approaches. One
provides a command-line interface, or coiviznc Intersretar, that allows users
to directly enter commands to be performed by the opelatmo system. The
other allows users to interface with the operating system via a graphical user
interface, or GUIL

2.21 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs on
(on interactive systems). On systems with multiple command interpreters to
choose from, the interpreters are known as czzils. For example, on UNIX and
Linux systems, a user may choose among several different shells, including
the Bourne shell, C shell, Bourne-Again shell, Korn shell, and others. Third—party
shells and free user-written shells are also available. Most shells provide similar
functionality, and a user’s choice of which shell to use is generally based on
personal preference. Figure 2.2 shows the Bourne shell command interpreter
being used on Solaris 10.

The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level manipulate
files: create, delete, list, print, copy, execute, and so on. The MS-DOS and UNIX
shells operate in this way. These commands can be implemented in two general
ways.

In one approach, the command interpreter itself contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach—used by UNIX, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with
the parameter £ile. txt. The function associated with the rm command would
be defined completely by the code in the file rm. In this way, programmers can
add new commands to the system easily by creating new files with the proper

53

(3]
(o

2.2 User Cper

e B Terminal

| File Edit View Terminal Taps Help x
i 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0 O ,
isd0 0.0 0.2 0.0 0.2 0.0 6.0 0.4 0 O |
|sdl 0.6 0.0 0.0 0.0 0.0 0.0 nLyooo 0

extended device statistics

device wis kris kw/s wait actv swe_t Sm Wb

ris
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
'sdo ¢.6 0.0 38.4 0.0 0.0 0.0 8.2 O ©
sl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
‘(e e e (G = (0 S R e "3.,(: SRER
- e 2y TS EIo T TiNe swap ~sh

allocated + 190M reserved = 1.30 used, 1.6G availahle

-

S 1.16

R R SRR |

2)F uptime
load average: 33.29, €7.58, 36.81
el I GRS)

f s 3 users, Toad average: 0.09, 0.11, 8.68
User Tty Togin@ +Hdle JCPU PCPU what

15JurD718days 1 Jusr/bin/ssh-agent -- fusr/bi
152und? 18 4w

15Jun0718daws

B P LIS PA NN G Rt

Figure 2.2 The Bourne shell command interpreter in Solaris 10.

names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface, or GUIL Here, rather than entering commands
directly via a command-line interface, users employ a mouse-based window-
and-menu system characterized by a <zz.<:c= metaphor. The user moves the
mouse to position its pointer on images, or Zzcxi, on the screen (the desktop)
that represent programs, files, directories, and system functions. Depending
on the mouse pointer’s location, clicking a button on the mouse can invoke a
program, select a file or directory—known as a folder—or pull down a menu
that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s at Xerox PARC research facility. The first GUI appeared on
the Xerox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s. The
user interface for the Macintosh operating system (Mac OS) has undergone
various changes over the years, the most significant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft’s first version of
Windows— Version 1.0—was based on the addition of a GUI interface to the
MS-DOS operating system. Later versions of Windows have made cosmetic
changes in the appearance of the GUI along with several enhancements in its
functionality, including Windows Explorer.

54

Chapter2 vz

Traditionally, UNIX systems have been dominated by command-line inter-
faces. Various GUI interfaces are available, however, including the Common
Desktop Environment (CDE) and X-Windows systems, which are common
on commercial versions of UNIX, such as Solaris and IBM’s AIX system. In
addition, there has been significant development in GUI designs from various
cpen-zsunee projects, such as K Desktop Environment (or KDE) and the GNOME
desktop by the GNU project. Both the KDE and GNOME desktops run on Linux
and various UNIX systems and are available under open-source licenses, which
means their source code is readily available for reading and for modification
under specific license terms.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
command-line interfaces, as they often provide powerful shell interfaces.
In contrast, most Windows users are pleased to use the Windows GUI
environment and almost never use the MS-DOS shell interface. The various
changes undergone by the Macintosh operating systems provide a nice study
in contrast. Historically, Mac OS has not provided a command-line interface,
always requiring its users to interface with the operating system using its GUL
However, with the release of Mac OS X (which is in part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and a command-line interface. Figure 2.3 is a screenshot of the Mac OS X GUL

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore

G Grab e edi S window neln g

Figure 2.3 The Mac OS X GUIL.

2.3

2.3 Svysiem Calle 55

not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let’s first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system calls, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified.
This sequence requires many I/0 system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are also possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
the file is protected against access. In these cases, the program should print a
message on the console (another sequence of system calls) and then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort (a system call), or we
may delete the existing file (another system call) and create a new one (another
system call). Another option, in an interactive system, is to ask the user (via
a sequence of system calls to output the prompting message and to read the
response from the terminal) whether to replace the existing file or to abort the
program.

Now that both files are set up, we enter a loop that reads from the input
file (a system call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failure in the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more
system calls), and finally terminate normally (the final system call). As we

56

Chapter2 =

J

can see, even simple programs may make heavy use of the operating system.
Frequently, systems execute thousands of system calls per second. This system-
call sequence is shown in Figure 2.4.
Most programmers never see this level of deta11 howeve1 Typlcally, apph—
cation developers design programs according to an = ! ;
ir . The API spec1f1es a set of functions that are available to an
application programmer, including the parameters that are passed to each
function and the return values the programmer can expect. Three of the most
common APIs available to application programmers are the Win32 API for Win-
dows systems, the POSIX API for POSIX-based systems (which include virtually
all versions of UNIX, Linux, and Mac OS X), and the Java API for designing
programs that run on the Java virtual machine. Note that—unless specified
—the system-call names used throughout this text are generic examples. Each
operating system has its own name for each system call.

Behind the scenes, the functions that make up an API typically invoke the
actual system calls on behalf of the application programmer. For example, the
Win32 function CreateProcess() (which unsurprisingly is used to create
a new process) actually calls the NTCreateProcess() system call in the
Windows kernel. Why would an application programmer prefer programming
according to an API rather than invoking actual system calls? There are several
reasons for doing so. One benefit of programming according to an API concerns
program portability: An application programmer designing a program using
an API can expect her program to compile and run on any system that supports
the same AFPI (although in reality, architectural differences often make this
more difficult than it may appear). Furthermore, actual system calls can often
be more detailed and difficult to work with than the API available to an
application programmer. Regardless, there often exists a strong correlation
between a function in the API and its associated system call within the kernel.

source file »| destination file

ﬁExample System Call Sequence \

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

\Terminate normally

Figure 2.4 Example of how system calls are used.

2.3 Ewetems Cails 57

EXAMPLE OF STANDARD API

As an example of a standard API, consider the ReadFile () function in the
Win32 API—a function for reading from a file. The API for this function
appears in Figure 2.5.

return value

|

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWCRD bytes To Read, | parameters
LPDWORD bytes Read,

LPOVERLAPPED ovl);

function name

Figure 2.5 The APl for the ReadFile () function.
A description of the parameters passed to ReadFile () is as follows:

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written
from

DWORD bytesToRead —the number of bytes to be read into the buffer
LPDWORD bytesRead —the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped 1/0 is being used

In fact, many of the POSIX and Win32 APIs are similar to the native system calls
provided by the UNIX, Linux, and Windows operating systems.

The run-time support system (a set of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the API and
invokes the necessary system calls within the operating system. Typically,
a number is associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call interface
then invokes the intended system call in the operating-system kernel and
returns the status of the system call and any return values.

The caller need know nothing about how the system call is implemented or
whatit does during execution. Rather, itneed only obey the APland understand
what the operating system will do as a result of the execution of that system
call. Thus, most of the details of the operating-system interface are hidden from
the programmer by the API and are managed by the run-time support library.
The relationship between an AP, the system-call interface, and the operating

58

2.4

Chapter 2 =Zvetes Ctouoins

in

(w3

user application

open ()
user
mode
system call interface
kernel
mode A
> open ()
. Implementation
[» ofopen ()
. system call
return

Figure 2.6 The handling of a user application invoking the open () system call.

system is shown in Figure 2.6, which illustrates how the operating system
handles a user application invoking the open() system call.

_System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating
system. The simplest approach is to pass the parameters in registers. In some
cases, however, there may be more parameters than registers. In these cases,
the parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). This
is the approach taken by Linux and Solaris. Parameters also can be placed, or
pushed, onto the stack by the program and popped off the stack by the operating
system. Some operating systems prefer the block or stack method because those
approaches do not hmlt the number or length of parameters being passed.

System calls can be grouped roughly into six major categories: process
control, file manlpulatlon device manipulation, mformatlon maintenance,
communications, and protection. In Sections 2.4.1 through 2.4.6, we discuss
briefly the types of system calls that may be provided by an operating system.
Most of these system calls support, or are supported by, concepts and functions

L}

‘\1'

o Caile 59

register
X: parameters
for call
> use parameters code for
load address X from table X system
system call 13 > call 13

user program

L - operating system

Figure 2.7 Passing of parameters as a table.

that are discussed in later chapters. Figure 2.8 summarizes the types of system
calls normally provided by an operating system.

2.41 Process Control

A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system call is made to terminate the currently
running program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a
zr—a system program designed to aid the programmer in finding and
ugs—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
invoking command interpreter. The command interpreter then reads the next
command. In an interactive system, the command interpreter simply continues
with the next command; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. Inabatch system, the command
interpreter usually terminates the entire job and continues with the next job.
Some systems allow control cards to indicate special recovery actions in case
an error occurs. A corizc. ard is a batch-system concept. It is a command to
manage the execuhon of a p1 ocess. If the program discovers an error inits input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or job executing one program may want to load and execute

another program. This featule allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or a batch command. An interesting question is where to return control when

the loaded program terminates. Th1s question is related to the problem of

60 Chapter 2 Cveizn &

Process control
o end, abort
o load, execute
o create process, terminate process
o get process attributes, set process attributes
o wait for time
o wait event, signal event
o allocate and free memory

File management
o create file, delete file

© open, close
o read, write, reposition
o get file attributes, set file attributes

Device management
o request device, release device

o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices

Information maintenance
o get time or date, set time or date

o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

Communications
o create, delete communication connection

o send, receive messages
o transfer status information

o attach or detach remote devices

Figure 2.8 Types of system calls.

whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.

If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to call another program. If
both programs continue concurrently, we have created a new job or process to

24 Tyoes of Dvelam

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit O
WaitForSingleObject) wait ()
File CreateFile() open()
Manipulation ReadFile () read ()
WriteFile() write()
CloseHandle () close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole () read()
WiriteConsole() write()
Information GetCurrentProcessID() getpid ()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipeO
CreateFileMapping(O shmget ()
MapViewOfFile () mmap ()
Protection SetFileSecurity () chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

be multiprogrammed. Often, there is a system call specifically for this purpose
(create process or submit job).

If we create anew job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of a job or process, including the job’s
priority, its maximum allowable execution time, and so on (get process
attributes and set process attributes). We may also want to terminate
a job or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them
to finish their execution. We may want to wait for a certain amount of time
to pass (wait time); more probably, we will want to wait for a specific event to
occur (wait event). The jobs or processes should then signal when that event
has occurred (signal event). Quite often, two or more processes may share
data. To ensure the integrity of the data being shared, operating systems often
provide system calls allowing a process to lock shared data, thus preventing
another process from accessing the data while it is locked. Typically such
system calls include acquire lock and release lock. System calls of these

62

Chapter 2 :/h by

EXAMPLE OF STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C program
invokes the printf() statement. The C library intercepts this call and
invokes the necessary system call(s) in the operating system—in this instance,
the write () system call. The C library takes the value returned by write ()
and passes it back to the user program. This is shown in Figure 2.9.

#include <stdio.h>
int main ()

{

— printf ("Greetings"); |«

return O;
}
user
mode Y
standard C library
kernel
mode

write ()

write ()
system call

Figure 2.9 Standard C library handling of write ().

types, dealing with the coordination of concurrent processes, are discussed in
great detail in Chapter 6.

There are so many facets of and variations in process and job control that
we next use two examples—one involving a single-tasking system and the
other a multitasking system—to clarify these concepts. The MS-DOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.10(a)). Because MS-DOS
is single-tasking, it uses a simple method to run a program and does not create
anew process. [tloads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.10(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest

free memory

free memory

process
command
interpreter command
interpreter
kernel kernel

(@)

(b)

63

Figure 2.10 MS-DOS execution. (a) At system startup. (b) Running a program.

of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s ch01ce
is run. This shell is 51m11a1 to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.11). To start a new. process,_the shell
executes a fork() system call. Then, the selected program is loaded into
memory via an exec () system call, and the program is executed. Depending
on the way the command was issued, the shell then either waits for the process
to finish or runs the process “in the background.” In the latter case, the shell
immediately requests another command. When a process is running in the
background, it cannot receive input directly from the keyboard, because the

process D

free memory

process C

interpreter

process B

kernel

Figure 2.11 FreeBSD running multiple programs.

64

Chapter 2 Syeiem Simuciures

[
45

shell is using this resource. /0 is therefore done through files or through a GUI
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program’s priority,
and so on. When the process is done, it executes an exit () system call to
terminate, returning to the invoking process a status code of 0 or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with a program example using
the fork () and exec() system calls.

2.4.2 File Management

The file system is discussed in more detail in Chapters 10 and 11. We can,
however, identify several common system calls dealing with files.

We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file’s attributes. Once the
file is created, we need to open it and to use it. We may also read, write, or
reposition (rewinding or skipping to the end of the file, for example). Finally,
we need to close the file, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, file type, protection codes, accounting information, and so on. At
least two system calls, get file attribute and set file attribute, are
required for this function. Some operating systems provide many more calls,
such as calls for file move and copy. Others might provide an API that performs
those operations using code and other system calls, and others might just
provide system programs to perform those tasks. If the system programs are
callable by other programs, then each can be considered an API by other system
programs.

2.4.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought
of as devices. Some of these devices are physical devices (for example, disk
drives), while others can be thought of as abstract or virtual devices (for
example, files). A system with multiple users may require us to first request
the device, to ensure exclusive use of it. After we are finished with the device,
we release it. These functions are similar to the open and close system
calls for files. Other operating systems allow unmanaged access to devices.
The hazard then is the potential for device contention and perhaps deadlock,
which is described in Chapter 7.

Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the similarity between 1I/O devices and files is so great that many operating
systems, including UNIX, merge the two into a combined file—device structure.
In this case, a set of system calls is used on both files and devices. Sometimes,

24 Tyoes of Svstem Calls 65

J

/0 devices are identified by special file names, directory placement, or file
attributes.

The user interface can also make files and devices appear to be similar, even
though the underlying system calls are dissimilar. This is another example of
the many design decisions that go into building an operating system and user
interface.

2.4.4 Information Maintenance

Many system calls exist simply for the purpose of transferring information
between the user program and the operating system. For example, most
systems have a system call to return the current time and date. Other system
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

Another set of system calls is helpful in debugging a program. Many
systems provide system calls to dump memory. This provision is useful for
debugging. A program trace lists each system call as it is executed. Even
microprocessors provide a CPU mode known as single step, in which a trap is
executed by the CPU after every instruction. The trap is usually caught by a
debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program
counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

In addition, the operating system keeps information about all its processes,
and system calls are used to access this information. Generally, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-

“the Commumcatmo processes exchancre messages with one anothe1 to transfe1

information. Messacres can be exchancred between the processes either directly
or indirectly thlough a common maﬂbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host also
has a network identifier, such as an IP address. Similarly, each process has
a process name, and this name is translated into an identifier by which the
operating system can refer to the process. The get hostidandget processid
system calls do this translation. The identifiers are then passed to the general-
purpose open and close calls provided by the file system or to specific
open connection and close connection system calls, depending on the
system’s model of communication. The recipient process usually must give its

66

2.5

Chapter 2 Sysiem Struciures
permission for communication to take place with an accept connection call.
Most processes that will be receiving connections are special-purpose daenons,
which are systems programs provided for that purpose. They execute a wait
for connectioncalland areawakened whena connectionis made. The source
of the communication, known as the client, and the receiving daemon, known as
a server, then exchange messages by using read message and write message
system calls. The close connection call terminates the communication.

In the shared-memory model, processes use shared memory createand

shared memory attach system calls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating sysféin
tries to prevent one process from accessing another process’s memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. The form of the data is determined by the processes and are not under
the operating system’s control. The processes are also responsible for ensuring
that they are not writing to the same location simultaneously. Such mechanisms
are discussed in Chapter 6. In Chapter 4, we look at a variation of the process
scheme—threads—in which memory is shared by default.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Itis also easier to
implement than is shared memory for intercomputer communication. Shared
memory allows maximum speed and convenience of communication, since it
can be done at memory transfer speeds when it takes place within a computer.
Problems exist, however, in the areas of protection and synchronization
between the processes sharing memory.

2.4.6 Protection

Protection provides a mechanism for controlling access to the resources
provided by a computer system. Historically, protection was a concern only on
multiprogrammed computer systems with several users. However, with the
advent of networking and the Internet, all computer systems, from servers to
PDAs, must be concerned with protection.

Typically, system calls providing protection include set permission and
get permission, which manipulate the permission settings of resources
such as files and disks. The allow user and deny user system calls spec-
ify whether particular users can—or cannot—be allowed access to certain
resources.

We cover protection in Chapter 14 and the much larger issue of security in
Chapter 15.

Another aspect of a modern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowestlevel is
hardware. Next is the operating system, then the system programs, and finally
the application programs. System programs, also known as system utilities,
provide a convenient environment for program development and execution.

67

Some of them are simply user interfaces to system calls; others are considerably
more complex. They can be divided into these categories:

File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and prmt the output to the terminal or other output devices
or files or display it in a window of the GUIL Some systems also support a
rzzisiry, which is used to store and retrieve configuration information.

© File modification. Several text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may also be special commands to search contents of files or perform
transformations of the text.

> Programming-language support. Compﬂels assemblers, debuggers, and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

© Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

¢ Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another’s screens, to browse Web
pages, to send electronic- maﬂ messages, to log in remotely, or to transfer
files from one machine to another. A S

T Lo oo g LIS z —n

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such application programs include Web browsers, word
processors and text formatters, spreadsheets, database systems, Compllels
plotting and statistical-analysis packages, and games.

"The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls.
Consider a user’s PC. When a user’s computer is running the Mac OS X
operating system, the user might see the GUI, featuring a mouse-and-windows
interface. Alternatively, or even in one of the windows, the user might have
a command-line UNIX shell. Both use the same set of system calls, but the
system calls look different and act in different ways. Further confusing the
user view, consider the user dual-booting from Mac OS X into Windows Vista.
Now the same user on the same hardware has two entirely different interfaces
and two sets of applications using the same physical resources. On the same

68

2.6

Chapter2 Zysiem Siruciures

J

hardware, then, a user can be exposed to multiple user interfaces sequentially
or concurrently.

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users desire certain obvious properties in a system. The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system. The system should be easy to
design, implement, and maintain; and it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for MVS, a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and designing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles. e et

R A

2.6.2 Mechanisms and Policies

I

One important principle is the separation of policy from mechanism. Mecha-
nisms determine 0w to do something; pohc1es Vdetermme gg]}gzt “will be done.
For example, the timer construct (see Section 1.5.2) is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a partlcular
user is a policy decision.

The separation of policy and mechanism is important for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A Creneral
mechanism insensitive to changes in policy would be more desirable. A Change

— ~ -

2.6 Ooersiing-Dysien: Design and Dmyplementaticn 69

in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used either to support a policy decision that I/O-intensive programs
should have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing a basic set of primitive

building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had a time-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a sincrle load-new-table command. At
the other ext1eme is a system such as Wmdows in which both mechanism

and policy are encoded in the system to enforce a global look and feel. All

applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate a resource, a policy decision must
be made. Whenever the question is how rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS, developed at MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: the
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finally,
an operating system is far easier to port—to move to some other hardware—if
itis writtenin a higher-level language. For example, MS-DOS was written in Intel
8088 assembly language. Consequently, it runs natively only on the Intel X86
tamily of CPUs. (Although MS-DOS runs natively only on Intel X86, emulators
of the X86 instruction set allow the operating system to run non-natively—
slower, with more resource use—on other CPUs. Zz1ui27cre are programs that
duplicate the functionality of one system with another system.) The Linux

70

2.7

Chapter 2 Systes Zi

operating system, in contrast, is written mostly in C and is available natively on
a number of different CPUs, including Intel X86, Sun SPARC, and IBMPowerPC.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today’s systems. Although an
expert assembly-language programmer can produce efficient small routines,
forlarge programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle the details
of complex dependencies much more easily than can the human mind.

As is true in other systems, major performance improvements in operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system is written and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

2

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easily. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial operating systems do not have well-defined structures.
Frequently, such systems started as small, simple, and limited systems and
then grew beyond their original scope. MS-DOS is an example of such a system.
It was originally designed and implemented by a few people who had no
idea that it would become so popular. It was written to provide the most
functionality in the least space, so it was not divided into modules carefully.
Figure 2.12 shows its structure.

In MS-DOS, the interfaces and levels of functionality are not well separated.
For instance, application programs are able to access the basic 1/0 routines
to write directly to the display and disk drives. Such freedom leaves MS-DOS
vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MS-DOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MS-DOS had no choice but
to leave the base hardware accessible.

Another example of limited structuring is the original UNIX operating
system. Like MS-DOS, UNIX initially was limited by hardware functionality. [t

- consists of two separable parts: the kernel and the system programs. The kernel

71

application program

resident system program

MS-DOS device driver

ROM BIOS device drivers

Figure 2.12 MS-DOS layer structure.

is further separated into a series of interfaces and device drivers, which have

been added and expanded over the years as UNIX has evolved. We can view the

traditional UNIX operating system as being layered, as shown in Figure 2.13.

Everything below the system-call interface and above the physical hardware

is the kernel. The kernel provides the file system, CPU scheduling, memory

management, and other operating-system functions through system calls.
Taken in sum, that is an enormous amount of functionality to be combined into

one level. This monolithic structure was difficult to implement and maintain.

2.7.2 Layered Approach

With ploper hardwale support, operatm0 systems can be broken into pleces

(the users)

shells and commands
compilers and interpreters
system libraries

(system-call interface fo the kernel
= signals terminal file system CPU scheduling
= handling swapping block 1/O page replacement
2 character 1/0 system system demand paging
terminal drivers disk and tape drivers virtual memory
kernel interface fo the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Figure 2.13 Traditional UNIX system structure.

72

Chapter 2

Yy

layer N
user interface

layer O
hardware

Figure 2.14 A layered operating system.

MS-DOS and UNIX systems. The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems. Under a top-
down approach, the overall functionality and features are determined and
are separated into components. Information hiding is also important, because
it leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itself performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken into a number of layers
{levels). The bottom layer (Iayer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.14.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M-—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basichardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system are simplified.

2.7

o

73

()
T
4]

Each layer is implemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory management
requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
/0 and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about all the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CPU scheduler.

A final problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an I/0
operation, it executes a system call that is trapped to the 1/0 layer, which calls
the memory-management layer, which in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Fach layer adds overhead to
the system call; the net result is a system call that takes longer than does one
on a nonlayered system.

These limitations have caused a small backlash against layenncr in recent
years. Fewer layers with more functionality are being deswned providing most
of the advantages of modularized code while avoiding the difficult problems
of layer definition and interaction.

2.7.3 Mlicrokernels

We have already seen that as UNIX expanded, the kernel became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized
the kernel using the microkernel approach. This method structures the
operating system by removing all nonessential components from the kernel and
mﬂalementmo them as system and user-level programs. The result is a smaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be nnplemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
a file, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

74

Chapter2 =ysien Sirocivres

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user —rather than kernel—processes. If a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to the
user, but it is implemented with a Mach kernel. The Mach kernel maps UNIX
system calls into messages to the appropriate user-level services. The Mac OS
X kernel (also known as Darwin) is also based on the Mach microkernel.

Another example is QNX, a real-time operating system. The QNX micro-
kernel provides services for message passing and process scheduling. It also
handles low-level network communication and hardware interrupts. All other
services in QNX are provided by standard processes that run outside the kernel
in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and links in additional services
either during boot time or during run time. Such a strategy uses dynamically
loadable modules and is common in modern implementations of UNIX, such
as Solaris, Linux, and Mac OS X. For example, the Solaris operating system
structure, shown in Figure 2.15, is organized around a core kernel with seven
types of loadable kernel modules:

L. Scheduling classes

. File systems

2. Loadable system calls
Executable formats

E. STREAMS modules

£, Miscellaneous

7. Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and

[4¥]

75

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

STREAMS
modules

executable
formats

Figure 2.15 Solaris loadable modules.

bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can call any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Mac OS X operating system uses a hybrid structure. Itis a layered
system in which one layer consists of the Mach microkernel. The structure of
Mac 0S X appears in Figure 2.16. The top layers include application environ-
ments and a set of services providing a graphical interface to applications.
Below these layers is the kernel environment, which consists primarily of the
Mach microkernel and the BSD kernel. Mach provides memory management;
support for remote procedure calls (RPCs) and interprocess communication
(IPC) facilities, including message passing; and thread scheduling. The BSD
component provides a BSD command line interface, support for networking
and file systems, and an implementation of POSIX APIs, including Pthreads.

application environments
and common services

A A
A\ A\
kernel BSD

environment
Mach

Figure 2.16 The Mac OS X structure.

76

2.8

Chapter 2 Cysizin Structiuses

In addition to Mach and BSD, the kernel environment provides an 1/0 kit for
development of device drivers and dynamically loadable modules (which Mac
Os X refers to as kernel extensions). As shown in the figure, applications and
common services can male use of either the Mach or BSD facilities directly.

(i

{r
Nk

The layered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a viziuzl mzcrine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer.

By using CPU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system :cet can create the illusion that a process
has its own processor with its own (virtual) memory. The virtual machine
provides an interface that is identical to the underlying bare hardware. Each
guzst process is provided with a (virtual) copy of the underlying computer
(F1gure 2.17). Usually, the guest process is in fact an operating system, and
that is how a single physmal machine can run multiple operating systems
concurrently, each in its own virtual machine.

2.8.1 History

Virtual machines first appeared commercially on IBM mainframes via the VM
operating system in 1972. VM has evolved and is still available, and many of

processes
processes
processes processes
L
rogrammin
ﬂ - P in%erface g kernel kernel kernel
ke;nel VM1 VM2 VM3
virtual-machine
implementation
hardware hardware

(@) (b)

Figure 2.17 System models. (a) Nonvirtual machine. (b) Virtual machine.

2.8 Sirinal Mdsonines 77

the original concepts are found in other systems, making this facility worth
exploring.

IBM VM370 divided a mainframe into multiple virtual machines, each
running its own operating system. A major difficulty with the VM virtual-
machine approach involved disk systems. Suppose that the physical machine
had three disk drives but wanted to support seven virtual machines. Clearly, it
could not allocate a disk drive to each virtual machine, because the virtual-
machine software itself needed substantial disk space to provide virtual
memory and spooling. The solution was to provide virtual disks—termed
minidisks in IBM’s VM operating system—that are identical in all respects except
size. The system implemented each minidisk by allocating as many tracks on
the physical disks as the minidisk needed.

Once these virtual machines were created, users could run any of the
operating systems or software packages that were available on the underlying
machine. For the IBM VM system, a user normally ran CMS—a single-user
interactive operating system.

2.8.2 Benefits

There are several reasons for creating a virtual machine. Most of them are
fundamentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently.

One important advantage is that the host system is protected from the
virtual machines, just as the virtual machines are protected from each other. A
virus inside a guest operating system might damage that operating system but
is unlikely to affect the host or the other guests. Because each virtual machine
is completely isolated from all other virtual machines, there are no protection
problems. At the same time, however, there is no direct sharing of resources.
Two approaches to provide sharing have been implemented. First, it is possible
to share a file-system volume and thus to share files. Second, it is possible to
define a network of virtual machines, each of which can send information over
the virtual communications network. The network is modeled after physical
communication networks but is implemented in software.

A virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a diffi-
cult task. Operating systems are large and complex programs, and it is difficult
to be sure that a change in one part will not cause obscure bugs to appear
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
a wrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly called system-
development time. Since it makes the system unavailable to users, system-
development time is often scheduled late at night or on weekends, when system
load is low.

78

Chapter2 Cyotem: Shruciires

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

Another advantage of virtual machines for developers is that multiple
operating systems can be running on the developer’s workstation concur-
rently. This virtualized workstation allows for rapid porting and testing of
programs in varying environments. Similarly, quality-assurance engineers can
test their applications in multiple environments without buying, powering,
and maintaining a computer for each environment.

A major advantage of virtual machines in production data-center use is
system comeciiczton, which involves taking two or more separate systems
and running them in virtual machines on one system. Such physical-to-virtual
conversions result in resource optimization, as many lightly used systems can
be combined to create one more heavily used system.

If the use of virtual machines continues to spread, application deployment
will evolve accordingly. If a system can easily add, remove, and move a
virtual machine, then why install applications on that system directly? Instead,
application developers would pre-install the application on a tuned and
customized operating system in a virtual machine. That virtual environment
would be the release mechanism for the application. This method would be
an improvement for application developers; application management would
become easier, less tuning would required, and technical support of the
application would be more straightforward. System administrators would
find the environment easier to manage as well. Installation would be simple,
and redeploying the application to another system would be much easier
than the usual steps of uninstalling and reinstalling. For widespread adoption
of this methodology to occur, though, the format of virtual machines must
be standardized so that any virtual machine will run on any virtualization
platform. The “Open Virtual Machine Format” is an attempt to do just that,
and it could succeed in unifying virtual-machine formats.

2.8.3 Simulation

System virtualization as discussed so far is just one of many system-emulation
methodologies. Virtualization is the most common because it makes guest
operating systems and applications “believe” they are running on native
hardware. Because only the system’s resources need to be virtualized, these
guests run at almost full speed.

Another methodology is eiznizticz, in which the host system has one
system architecture and the guest system was compiled for a different archi-
tecture. For example, suppose a company has replaced its outdated computer
system with a new system but would like to continue to run certain important
programs that were compiled for the old system. The programs could be run
in an emulator that translates each of the outdated system’s instructions into
the native instruction set of the new system. Emulation can increase the life of
programs and allow us to explore old architectures without having an actual
old machine, but its major challenge is performance. Instruction-set emulation
can run an order of magnitude slower than native instructions. Thus, unless
the new machine is ten times faster than the old, the program running on

2.8 Virtual s

79

the new machine will run slower than it did on its native hardware. Another
challenge is that it is difficult to create a correct emulator because, in essence,
this involves writing an entire CPU in software.

2.8.4 Para-virtualization

S

is another variation on this theme. Rather than try to
trlck a guest operating system into believing it has a system to itself, para-
virtualization presents the guest with a system that is similar but not identical
to the guest’s preferred system. The guest must be modified to run on the
paravirtualized hardware. The gain for this extra work is more efficient use of
resources and a smaller virtualization layer.

Solaris 10 includes -2 zinzzg, or zo .25, that create a virtual layer between
the operating system and the applications. In this system, only one kernel is
installed, and the hardware is not virtualized. Rather, the operating system
and its devices are virtualized, providing processes within a container with
the impression that they are the only processes on the system. One or more
containers can be created, and each can have its own applications, network
stacks, network address and ports, user accounts, and so on. CPU resources
can be divided up among the containers and the systemwide processes. Figure
2.18 shows a Solaris 10 system with two containers and the standard “global”
user space.

user programs
system programs

CPU resources
memory resources

global zone

user programs
system programs
network addresses
device access
CPU resources
Memory resources

zone 1

user programs
system programs
network addresses
device access
CPU resources
memory resources

zone 2

virtual platform
device management

zone management

Solaris kernel

network addresses

=

=

Figure 2.18 Solaris 10 with two containers.

80

Chapter 2 Cystemn Stiuciures

2.8.5 Implementation

Although the virtual-machine concept is useful, it is difficult to implement.
Much work is required to provide an exact duplicate of the underlying machine.
Remember that the underlying machine typically has two modes: user mode
and kernel mode. The virtual-machine software can run in kernel mode, since
it is the operating system. The virtual machine itself can execute in only user
mode. Just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and a virtual kernel
mode, both of which run in a physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
call or an attempt to execute a privileged instruction) must also cause a transfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system call, for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor in the real machine.
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system call. It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real /0O might have
taken 100 milliseconds, the virtual I/O might take less time (because it is
spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. VM,
discussed earlier, works for IBM machines because normal instructions for the
virtual machines can execute directly on the hardware. Only the privileged
instructions (needed mainly for 1/0) must be simulated and hence execute
more slowly.

Without some level of hardware support, virtualization would be impos-
sible. The more hardware support available within a system, the more feature
rich, stable, and well performing the virtual machines can be. All major general-
purpose CPUs provide some amount of hardware support for virtualization.
For example, AMD virtualization technology is found in several AMD proces-
sors. It defines two new modes of operation—host and guest. Virtual machine
software can enable host mode, define the characteristics of each guest virtual
machine, and then switch the system to guest mode, passing control of the
system to the guest operating system that is running in the virtual machine.
In guest mode, the virtualized operating system thinks it is running on native
hardware and sees certain devices (those included in the host’s definition of
the guest). If the guest tries to access a virtualized resource, then control is
passed to the host to manage that interaction.

2.8.6 Examples

Despite the advantages of virtual machines, they received little attention for
a number of years after they were first developed. Today, however, virtual
machines are coming into fashion as a means of solving system compatibility
problems. In this section, we explore two popular contemporary virtual
machines: the VMware Workstation and the Java virtual machine. As you

2.8 Virtual Macking

(D

E 81

will see, these virtual machines can typically run on top of operating systems
of any of the design types discussed earlier. Thus, operating system design
methods—simple layers, microkernels, modules, and virtual machines—are
not mutually exclusive.

2.8.6.1 VMware

Most of the virtualization techniques discussed in this section require virtual-
ization to be supported by the kernel. Another method involves writing the
virtualization tool to run in user mode as an application on top of the operating
system. Virtual machines running within this tool believe they are running on
bare hardware but in fact are running inside a user-level application.

Viviwars Workstation is a popular commercial application that abstracts
Intel X86 and compatible hardware into isolated virtual machines. VMware
Workstation runs asan application on a host operating system such as Windows
or Linux and allows this host system to concurrently run several different guest
operating systems as independent virtual machines.

The architecture of such a system is shown in Figure 2.19. In this scenario,
Linux is running as the host operating system; and FreeBSD, Windows NT, and
Windows XP are running as guest operating systems. The virtualization layeris
the heart of VMware, as it abstracts the physical hardware into isolated virtual
machines running as guest operating systems. Each virtual machine has its
own virtual CPU, memory, disk drives, network interfaces, and so forth.

The physical disk the guest owns and manages is really just a file within the
file system of the host operating system. To create an identical guest instance,
we can simply copy the file. Copying the file to another location protects the
guest instance against a disaster at the original site. Moving the file to another

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virfual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
host operating system
(Linux)
hardware
CPU /O devices

Figure 2,19 VMware architecture.

82

Chapter2 Coelen: Dhruciarac

location moves the guest system. These scenarios show how virtualization can
improve the efficiency of system administration as well as system resource use.

2.8.6.2 The Java Virtual Machine

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large API
library, Java also provides a specification for a Java virtual machine—or JVM.

Java objects are specified with the class construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the JVM.

The JVM is a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.20. The class loader loads the compiled .class
files from both the Java program and the Java API for execution by the Java
interpreter. After a class is loaded, the verifier checks that the . class file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The JVM also automatically manages memory by performing
garbage collection—the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The JVM may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a Web browser.
Alternatively, the JVM may be implemented in hardware on a chip specifically
designed to run Java programs. If the JVM is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use a just-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted all over again.
A technique that is potentially even faster is to run the JvM in hardware on a

Java program Java API
: --4- | classloader |«-f-- h
.class files .class files

Java
interpreter

Y

host system
(Windows, Linux, etc.)

Figure 2.20 The Java virtual machine.

2.8 Virtuzl Mackines

THE .NET FRAMEWORK

The .NET Framework is a collection of technologies, including a set of class
libraries, and an execution environment that come together to provide a
platform for developing software. This platform allows programs to be
written to target the NET Framework instead of a specific architecture. A
program written for the .NET Framework need not worry about the specifics
of the hardware or the operating system on which it will run. Thus, any
architecture implementing .NET will be able to successfully execute the
program. This is because the execution environment abstracts these details
and provides a virtual machine as an intermediary between the executing
program and the underlying architecture.

At the core of the NET Framework is the Common Language Runtime
(CLR). The CLR is the implementation of the .NET virtual machine. It provides
an environment for execution of programs written in any of the languages
targeted at the .NET Framework. Programs written in languages such as
C# (pronounced C-sharp) and VB.NET are compiled into an intermediate,
architecture-independent language called Microsoft Intermediate Language
(MS-IL). These compiled files, called assemblies, include MS-IL instructions
and metadata. They have file extensions of either .EXE or .DLL. Upon
execution of a program, the CLR loads assemblies into what is known as
the Application Domain. As instructions are requested by the executing
program, the CLR converts the MS-IL instructions inside the assemblies into
native code that is specific to the underlying architecture using just-in-time
compilation. Once instructions have been converted to native code, they are
kept and will continue to run as native code for the CPU. The architecture of
the CLR for the NET framework is shown in Figure 2.21.

Ct+ VB.Net
source source
compilation l l
MS-IL MS-IL
assembly assembly
CLR A \ 4

just-in-time compiler

A

host system

Figure 2.21 Architecture of the CLR for the .NET Framework.

83

84

2.9

Chapter 2 Cocizre Divciinag

special Java chip thatexecutes the Java bytecode operations as native code, thus
bypassing the need for either a software interpreter or a just-in-time compiler.

Broadly, “=:ccnz is the activity of finding and fixing errors, or = .z2, in a
system. Debuggmg seeks to find and fix errors in both hardware and software.
Perf01mance problems are considered bugs so debugging can also include
7 =2z “uning, which seeks to improve performance by removing
sZizrzcie in the processing taking place within a system. A discussion of
hardware debugging is outside of the scope of this text. In this section, we
explore debugging kernel and process errors and performance problems.

2.9.1 Failure Analysis

If a process fails, most operating systems write the error information to a “=z
“.= to alert system operators or users that the problem occurred. The operating
system can also take a 2oz <izns —a capture of the memory (referred to as the

“core” in the early days of computing) of the process. This core image is stored
in a file for later analysis. Running programs and core dumps can be probed
by a Zz:uzzzez, a tool designed to allow a programmer to explore the code and
memory of a process.

Debugging user-level process code is a challenge. Operating system kernel
debuggm0 even more complex because of the size and Complex1ty of the kernel,
its control of the hardware, and the lack of user-level debugging tools. A kernel
failure is called a =zz2. As with a process fallule error mfonnatlon is saved to
a log file, and the memory state is saved to a zzecit Zumne,

Ope1 ating system debugging frequently uses d1ffe1 enttools and techniques
than process debucrcrmo due to the very different nature of these two tasks.
Consider that a kemel failure in the file- -system code would make it risky for
the kernel to try to save its state to a file on the file system before rebooting.
A common technique is to save the kernel’s memory state to a section of disk
set aside for this purpose that contains no file system. If the kernel detects
an unrecoverable error, it writes the entire contents of memory, or at least the
kernel-owned parts of the system memory, to the disk area. When the system
reboots, a process runs to gather the data from that area and write it to a crash
dump file within a file system for analysis.

2.9.2 Performance Tuning

To identify bottlenecks, we must be able to monitor system performance. Code
must be added to compute and display measures of system behavior. In a
number of systems, the operating system does this task by producing trace
listings of system behavior. All interesting events arelogged with their time and
important parameters and are written to a file. Later, an analysis program can
process the log file to determine system performance and to identify bottlenecks
and inefficiencies. These same traces can be run as input for a simulation of
a suggested improved system. Traces also can help people to find errors in
operating-system behavior.

2.9 Cpertivgesyeiam Debugning 85

Kernighan's Law

“Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.”

Another approach to performance tuning is to include interactive tools
with the system that allow users and administrators to question the state of
various components of the system to look for bottlenecks. The UNIX command
top displays resources used on the system, as well as a sorted list of the “top”
resource-using processes. Other tools display the state of disk I/0, memory
allocation, and network traffic. The authors of these single-purpose tools try to
guess what a user would want to see while analyzing a system and to provide
that information.

Making running operating systems easier to understand, debug, and tune
is an active area of operating system research and 1mplementat10n. The cycle
of enabling tracing as system problems occur and analyzing the traces later
is being broken by a new generation of kernel-enabled performance analysis
tools. Further, these tools are not single-purpose or merely for sections of code
that were written to emit debugging data. The Solaris 10 DTrace dynamic
tracing facility is a leading example of such a tool.

2.9.3 DTrace

“7rzcz is afaclity that dynamically adds probes to a running system, both
in user processes and in the kernel. These probes can be querled via the D
programming language to determine an astonishing amount about the kernel,
the system state, and process activities. For example, Figure 2.22 follows an
application asit executes a system call (1oct1) and further shows the functional
calls within the kernel as they execute to perform the system call. Lines ending
with “U” are executed in user mode, and lines ending in “K” in kernel mode.

Debugging the interactions between user-level and kernel code is nearly
impossible without a toolset that understands both sets of code and can
instrument the interactions. For that toolset to be truly useful, it must be able
to debug any area of a system, including areas that were not written with
debucrcrmg in mind, and do so without affecting system reliability. This tool
must also have a minimum performance 11npact—1deally it should have no
impact when not in use and a proportional impact during use. The DTrace tool
meets these requirements and provides a dynamic, safe, low-impact debugging
environment.

Until the DTrace framework and tools became available with Solaris 10,
kernel debugging was usually shrouded in mystery and accomplished via
happenstance and archaic code and tools. For example, CPUs have a breakpoint
feature that will halt execution and allow a debugger to examine the state of the
system. Then execution can continue until the next breakpoint or termination.
This method cannot be used in a multiuser operating-system kernel without
negatively affecting all of the users on the system. - roling, which periodically
samples the instr uction pointer to determine which code is bemcr executed, can
show statistical trends but not individual activities. Code can be included in
the kernel to emit specific data under specific circumstances, but that code

86

-

Chapter2 Sweiem Siopciures

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’'./all.d’ matched 52377 probes
CPU FUNCTION
0 -» XEventsQueued
0 -> XEventsQueued
-> XllTransBytesReadable
<- XllTransBytesReadable
-> XllTransSocketBytesReadable
<- XllTransSocketBytesreadable
-> loctl
-> doctl
-> getf
-> set_active fd
<- set _active_ fd
<— getf
-> get_udatamodel
<- get_udatamodel

ARARARRARCaCddd

[N eNeoNeoNoNeoNeNeNoNoNeNol

-> releasef
-> clear active fd
<— clear active_ fd
-> cv_broadcast
<— cv_broadcast
<— releasef
<- ioctl
<— ioctl
<- _XEventsQueued
<— XEventsQueued

cooocoococoooO.
dddadm " AARNA"AAR"N

Figure 2.22 Solaris 10 dtrace follows a system call within the kernel.

slows down the kernel and tends not to be included in the part of the kernel
where the specific problem being debugged is occurring.

In contrast, DTrace runs on production systems—systems that are running
important or critical applications—and causes no harm to the system. It
slows activities while enabled, but after execution it resets the system to its
pre-debugging state. It is also a broad and deep tool. It can broadly debug
everything happening in the system (both at the user and kernel levels and
between the user and kernel layers). DTrace can also delve deeply into code,
showing individual CPU instructions or kernel subroutine activities

TTracz is composed of a compiler, a framework, croviders of Trclies
written within that framework, and ccnsumiers of those probes DTrace
providers create probes. Kernel structures exist to keep track of all probes that
the providers have created. The probes are stored in a hash table data structure
that is hashed by name and indexed according to unique probe identifiers.
When a probe is enabled, a bit of code in the area to be probed is rewritten
to call dtrace_probe(probe identifier) and then continue with the code’s
original operation. Different providers create different kinds of probes. For
example, a kernel system-call probe works differently from a user-process
probe, and that is different from an I/0 probe.

DTrace features a compiler that generates a byte code that is run in the
kernel. This code is assured to be “safe” by the compiler. For example, no

2.9 Creralivg-System Tabugs 87

loops are allowed, and only specific kernel state modifications are allowed
when specifically requested. Only users with the DTrace “privileges” (or “root”
users) are allowed to use DTrace, as it can retrieve private kernel data (and
modify data if requested). The generated code runs in the kernel and enables
probes. It also enables consumers in user mode and enables communications
between the two.

A DTrace consumer is code that is interested in a probe and its results.
A consumer requests that the provider create one or more probes. When a
probe fires, it emits data that are managed by the kernel. Within the kernel,
actions called srziing conimcl siocice, or 2C°2¢, are performed when probes
fire. One probe can cause multlple ECBs to execute if more than one consumer
is interested in that probe. Each ECB contains a predlcate (“if statement”) that
can filter out that ECB. Otherwise, the list of actions in the ECB is executed. The
most usual action is to capture some bit of data, such as a variable’s value at
that point of the probe execution. By gathering such data, a complete picture of
a user or kernel action can be built. Further, probes firing from both user space
and the kernel can show how a user-level action caused kernel-level reactions.
Such data are invaluable for performance monitoring and code optimization.

Once the probe consumer terminates, its ECBs are removed. If there are no
ECBs consuming a probe, the probe is removed. That involves rewriting the
code to remove the dtrace_probe call and put back the original code. Thus,
before a probe is created and after it is destroyed, the system is exactly the
same, as if no probing occurred.

DTrace takes care to assure that probes do not use too much memory or
CPU capacity, which could harm the running system. The buffers used to hold
the probe results are monitored for exceeding default and maximum limits.
CPU time for probe execution is monitored as well. If limits are exceeded, the
consumer is terminated, along with the offending probes. Buffers are allocated
per CPU to avoid contention and data loss.

An example of D code and its output shows some of its utility. The following
program shows the DTrace code to enable scheduler probes and record the
amount of CPU time of each process running with user ID 101 while those
probes are enabled (that is, while the program runs):

sched:::on-cpu
uid == 101

{
}

sched: ::off-cpu
self->ts

self->ts = timestamp;

Q@time [execname] = sum(timestamp - self->ts);
self->ts = 0;

The output of the program, showing the processes and how much time (in
nanoseconds) they spend running on the CPUs, is shown in Figure 2.23.

88

2.10

Chapter2 Sygiem

[IES U T it

€3]

dtrace -s sched.d
dtrace: script ‘sched.d” matched 6 probes

C
gnome-settings-d 142354
gnome-vfs-daemon 158243
dsdm 189804
wnck-applet 200030
gnome-panel 277864
clock-applet 374916
mapping-daemon 385475
Xscreensaver 514177
metacity 539281
Xorg 2579646
gnome-terminal 5007269
mixer_applet2 7388447
java 10769137

Figure 2.23 Output of the D code.

Because DTrace is part of the open-source Solaris 10 operating system,
it is being added to other operating systems when those systems do not
have conflicting license agreements. For example, DTrace has been added to
Mac 0s X 10.5 and FreeBSD and will likely spread further due to its unique
capabilities. Other operating systems, especially the Linux derivatives, are
adding kernel-tracing functionality as well. Still other operating systems are
beginning to include performance and tracing tools fostered by research at
various institutions, including the Paradyn project.

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system generation (SYSGEN).

The operating system is normally distributed on disk, on CD-ROM or
DVD-ROM, or as an “ISO” image, which is a file in the format of a CD-ROM
or DVD-ROM. To generate a system, we use a special program. This SYSGEN
program reads from a given file, or asks the operator of the system for
information concerning the specific configuration of the hardware system, or
probes the hardware directly to determine what components are there. The
following kinds of information must be determined.

~ What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CPU systems, each
CPU may be described.

211 Sy

J

B0 89

How will the boot disk be formatted? How many sections, or “partitions,”
will it be separated into, and what will go into each partition?

¢ How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
“illegal address” fault is generated. This procedure defines the final legal
address and hence the amount of available memory.

< What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device’s
type and model, and any special device characteristics.

o What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
SO oM.

Once this information is determined, it can be used in several ways. At one
extreme, a system administrator can use it to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output-object version of the operating system that is tailored to the
system described.

At a slightly less tailored level, the system description can lead to the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for all supported 1/0
devices, but only those needed are linked into the operating system. Because
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.

The major differences among these approaches are the size and generality
of the generated system and the ease of modifying it as the hardware
configuration changes. Consider the cost of modifying the system to supporta
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

2.1

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as PCs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

90

2.12

Chapter 2 Cyzient Divucines

When a CPU receives a reset event—for instance, when it is powered up
or rebooted—the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM is in an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot easily be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usually, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CPU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read-
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower than executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A final issue with firmware is that it is relatively expensive, so
usually only small amounts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap runs diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that =<2t =izclc. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and knows only the address on disk and length of the
remainder of the bootstrap program. Z=UE is an example of an open-source
bootstrap program for Linux systems. All of the disk-bound bootstrap, and the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has a boot partition (more on that in Section 12.5.1) is called a boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

Operating systems provide a number of services. At the lowest level, system
calls allow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue a request without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal

Hyercises 91

when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests,
and 1/0O requests. Program errors can be considered implicit requests for
service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system’s jobs.

The design of a new operating system is a major task. It is important that
the goals of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
system as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details (mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later.

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system for a particular machine configuration, we must perform system
generation.

Debugging process and kernel failures can be accomplished through the
use of debuggers and other tools that analyze core dumps. Tools such as DTrace
analyze production systems to find bottlenecks and understand other system
behavior.

For a computer system to begin running, the CPU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is also in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
from firmware and disk until the operating system itself is loaded into memory
and executed.

2.1 What are the five major activities of an operating system with regard to
file management?

2.2 What are the three major activities of an operating system with regard
to memory management?

92

Chapter 2 Zwoizm divooinize

2.3
2.4

2.5

2.6

2.7

2.8

2.9

2.10

211

212

213

2.14

2.15

2.16

217

2.18

Why is a just-in-time compiler useful for executing Java programs?

The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

Why is the separation of mechanism and policy desirable?

Would it be possible for the user to develop a new command interpreter
using the system-call interface provided by the operating system?

What is the purpose of the command interpreter? Why is it usually
separate from the kernel?

What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?

It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

What is the main advantage of the layered approach to system design?
What are the disadvantages of using the layered approach?

What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

Describe three general methods for passing parameters to the operating
system.

What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

What system calls have to be executed by a command interpreter or shell
in order to start a new process?

What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of thelayered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization.

In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

How could a system be designed to allow a choice of operating systems
from which to boot? What would the bootstrap program need to do?

2.19

2.20

221

Crogeaminlng Focizois 93
What are the advantages and disadvantages of using the same system-
call interface for manipulating both files and devices?

Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

Why do some systems store the operating system in firmware, while
others store it on disk?

Vel -

In Section 2.3, we described a program that copies the contents of one file
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Win32 or POSIX APIL. Be sure to include all necessary error
checking, including ensuring that the source file exists.

Once you have correctly designed and tested the program, if
you used a system that supports it, run the program using a utility
that traces system calls. Linux systems provide the ptrace utility, and
Solaris systems use the truss or dtrace command. On Mac OS X, the
ktrace facility provides similar functionality. As Windows systems do
not provide such features, you will have to trace through the Win32
version of this program using a debugger.

Adding a system call to the Linux Kernel.

In this project, you will study the system-call interface provided by the
Linux operating system and learn how user programs communicate with
the operating system kernel via this interface. Your task is to incorporate
a new system call into the kernel, thereby expanding the functionality
of the operating system.

Part 1: Getting Started

A user-mode procedure call is performed by passing arguments to the
called procedure either on the stack or through registers, saving the
current state and the value of the program counter, and jumping to
the beginning of the code corresponding to the called procedure. The
process continues to have the same privileges as before.

System calls appear as procedure calls to user programs but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system-call
number into the EAX register, storing arguments to the system call in
other hardware registers, and executing a trap instruction (which is the

94

Chapter 2 Zocten: Eiruciures

INT 0x80 assembly instruction). After the trap is executed, the system-
call number is used to index into a table of code pointers to obtain the
starting address for the handler code implementing the system call. The
process then jumps to this address, and the privileges of the process
are switched from user to kernel mode. With the expanded privileges,
the process can now execute kernel code, which may include privileged
instructions that cannot be executed in user mode. The kernel code
can then carry out the requested services, such as interacting with 1/0
devices, and can perform process management and other activities that
cannot be performed in user mode.

The system call numbers for recent versions of the Linux ker-
nel are listed in /usr/src/linux-2.x/include/asm-1386/unistd.h.
(For instance, ._NR_close corresponds to the system call close (), which
is invoked for closing a file descriptor, and is defined as value 6.) The
list of pointers to system-call handlers is typically stored in the file
/usr/src/linux-2.x/arch/i386/kernel/entry.S under the head-
ing ENTRY (sys_call_table). Notice that sys_close is stored at entry
number 6 in the table to be consistent with the system-call number
defined in the unistd.h file. (The keyword . long denotes that the entry
will occupy the same number of bytes as a data value of type long.)

Part 2: Building a New Kernel

Before adding a system call to the kernel, you must familiarize yourself
with the task of building the binary for a kernel from its source code and
booting the machine with the newly built kernel. This activity comprises
the following tasks, some of which depend on the particular installation
of the Linux operating system in use.

= Obtain the kernel source code for the Linux distribution. If the
source code package has already been installed on your machine,
the corresponding files might be available under /usr/src/linux
or /usr/src/linux-2.x (where the suffix corresponds to the kernel
version number). If the package has not yet been installed, it can be
downloaded from the provider of your Linux distribution or from
http://www.kernel.org.

Learn how to configure, compile, and install the kernel binary. This
will vary among the different kernel distributions, but some typical
commands for building the kernel (after entering the directory
where the kernel source code is stored) include:

© make xconfig
o make dep

°o make bzImage

Add a new entry to the set of bootable kernels supported by the
system. The Linux operating system typically uses utilities such as
1ilo and grub to maintain a list of bootable kernels from which the

Crogrziiming Crilects 95
user can choose during machine boot-up. If your system supports
lilo, add an entry to 1ilo. conf, such as:

image=/boot /bzImage.mykernel
label=mykernel
root=/dev/hdas

read-only

where /boot/bzImage .mykernelisthekernelimage and mykernel
is the label associated with the new kernel. This step will allow
you to choose the new kernel during the boot-up process. You will
then have the option of either booting the new kernel or booting
the unmodified kernel if the newly built kernel does not function

properly.

Part 3: Extending the Kernel Source

You can now experiment with adding a new file to the set of source
files used for compiling the kernel. Typically, the source code is stored
in the /usr/src/linux-2.x/kernel directory, although that location
may differ in your Linux distribution. There are two options for adding
the system call. The firstis to add the system call to an existing source file
in this directory. The second is to create a new file in the source directory
and modify /usr/src/linux-2.x/kernel/Makefile to include the
newly created file in the compilation process. The advantage of the first
approach is that when you modify an existing file that is already part of
the compilation process, the Makefile need not be modified.

Part 4: Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corre-
sponding to building and booting Linux kernels, you can begin the
process of adding a new system call to the Linux kernel. In this project,
the system call will have limited functionality; it will simply transition
from user mode to kernel mode, print a message that is logged with the
kernel messages, and transition back to user mode. We will call this the
helloworld system call. While ithas only limited functionality, itillustrates
the system-call mechanism and sheds light on the interaction between
user programs and the kernel.

Create a new file called helloworld.c to define your system call.
Include the header files 1linux/linkage.h and linux/kernel.h.
Add the following code to this file:

#include <linux/linkage.h>

#include <linux/kernel.h>

asmlinkage int sys_helloworld() {
printk(KERN_EMERG "hello world!");

return 1;

}

96

Chapter2 Svstem Struciures

This creates a system call with the name sys_helloworld (). If you
choose to add this system call to an existing file in the source
directory, all that is necessary is to add the sys_helloworld()
function to the file you choose. In the code, asmlinkage is
a remnant from the days when Linux used both C++ and C
code and is used to indicate that the code is written in C. The
printk() function is used to print messages to a kernel log file
and therefore may be called only from the kernel. The kernel mes-
sages specified in the parameter to printk() are logged in the
file /var/log/kernel/warnings. The function prototype for the
printk () call is defined in /usr/include/linux/kernel.h.

¢ Define a new system call number for __NR helloworld in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A user
program can use this number to identify the newly added system
call. Also be sure to increment the value for __NR_syscalls, which
is stored in the same file. This constant tracks the number of system
calls currently defined in the kernel.

¢ Add an entry .long sys_helloworld to the sys_call_table
defined inthe /usr/src/linux-2.x/arch/i386/kernel/entry.S
file. As discussed earlier, the system-call number is used to index
into this table to find the position of the handler code for the
invoked system call.

¢ Add your file helloworld.c to the Makefile (if you created a new
file for your system call.) Save a copy of your old kernel binary
image (in case there are problems with your newly created kernel).
You can now build the new kernel, rename it to distinguish it from
the unimodified kernel, and add an entry to the loader configuration
files (suchas1lilo. conf). After completing these steps, you can boot
either the old kernel or the new kernel that contains your system
call.

Part 5: Using the System Call from a User Program

When you boot with the new kernel, it will support the newly defined
system call; you now simply need to invoke this system call from a
user program. Ordinarily, the standard C library supports an interface
for system calls defined for the Linux operating system. As your new
system call is not linked into the standard C library, however, invoking
your system call will require manual intervention.

As noted earlier, a system call is invoked by storing the appropriate
value in a hardware register and performing a trap instruction. Unfortu-
nately, these low-level operations cannot be performed using Clanguage
statements and instead require assembly instructions. Fortunately, Linux
provides macros for instantiating wrapper functions that contain the
appropriate assembly instructions. For instance, the following C pro-
gram uses the _syscall0() macro to invoke the newly defined system
call:

[
iy
L

L)

Bipiliographical MNaotes 97
#include <linux/errno.h>
#include <sys/syscall.h>
#include <linux/unistd.h>
_syscallO(int, helloworld);

main()

{
}

helloworld();

@ The _syscallO macro takes two arguments. The first specifies the
type of the value returned by the system call; the second is the
name of the system call. The name is used to identify the system-
call number that is stored in the hardware register before the trap
instruction is executed. If your system call requires arguments, then
a different macro (such as _syscall0, where the suffix indicates the
number of arguments) could be used to instantiate the assembly
code required for performing the system call.

Compile and execute the program with the newly built kernel.
There should be a message “hello world!” in the kernel log file
/var/log/kernel/warnings to indicate that the system call has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system
call and have it printed into the kernel log file? What are the implications
of passing pointers to data stored in the user program’s address space
as opposed to simply passing an integer value from the user program to
the kernel using hardware registers?

Dijkstra [1968] advocated the layered approach to operating-system design.
Brinch-Hansen [1970] was an early proponent of constructing an operating
system as a kernel (or nucleus) on which more complete systems can be built.

System instrumentation and dynamic tracing are described in Tamches and
Miller [1999]. DTrace is discussed in Cantrill et al. [2004]. The DTrace source
code is available at http://src.opensolaris.org/source/. Cheung and
Loong [1995] explore issues of operating-system structure from microkernel
to extensible systems.

MS-DOS, Version 3.1, is described in Microsoft [1986]. Windows NT and
Windows 2000 are described by Solomon [1998] and Solomon and Russinovich
[2000]. Windows 2003 and Windows XP internals are described in Russinovich
and Solomon [2005]. Hart [2005] covers Windows systems programming in
detail. BSD UNIX is described in McKusick et al. [1996]. Bovet and Cesati
[2006] thoroughly discuss the Linux kernel. Several UNIX systems—including
Mach—are treated in detail in Vahalia [1996]. Mac OS X is presented at

98

Chapter 2 Cvsicm Siraciuzes

http://www.apple.com/macosx and in Singh [2007]. Solaris is fully described
in McDougall and Mauro [2007].

The first operating system to provide a virtual machine was the CP/67 on
an IBM 360/67. The commercially available IBM VM/370 operating system was
derived from CP/67. Details regarding Mach, a microkernel-based operating
system, can be found in Young et al. [1987]. Kaashoek et al. [1997] present details
regarding exokernel operating systems, wherein the architecture separates
management issues from protection, thereby giving untrusted software the
ability to exercise control over hardware and software resources.

The specifications for the Java language and the Java virtual machine are
presented by Gosling et al. [1996] and by Lindholm and Yellin [1999], respec-
tively. The internal workings of the Java virtual machine are fully described
by Venners [1998]. Golm et al. [2002] highlight the JX operating system; Back
et al. [2000] cover several issues in the design of Java operating systems. More
information on Java is available on the Web at http://www. javasoft.com.
Details about the implementation of VMware can be found in Sugerman et al.
[2001]. Information about the Open Virtual Machine Format can be found at
http://www.vaware.com/appliances/learn/ovE . html.

Part Two

A process can be thought of as a program in execution. A process will
need certainresources—such as CPU time, memory, files, and I/O devices
—to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modern operating systems now support processes
that have multiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, communication,
and deadiock handling for processes.

CHAPTER

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
all the system’s resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, which is
a program in execution. A process is the unit of work in a modern time-sharing
system.

The more complex the operating system is, the more it is expected to do on
behalf of its users. Although its main concernis the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, all these processes can execute concurrently, with the CPU (or
CPUs) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive. In this chapter, you
will read about what processes are and how they work.

To introduce the notion of a process — a program in execution, which forms
the basis of all computation.

- To describe the various features of processes, including scheduling,
creation and termination, and communication.

- To describe communication in client—server systems.

A question that arises in discussing operating systems involves what to call all
the CPU activities. A batch system executes jobs, whereas a time-shared system
has wuser programs, or tasks. Even on a single-user system such as Microsoft

101

102

Chapter 3 “rocese Concest

Windows, a user may be able to run several programs at one time: a word
processor, a Web browser, and an e-mail package. And even if the user can
execute only one program at a time, the operating system may need to support
its own internal programmed activities, such as memory management. In many
respects, all these activities are similar, so we call all of them processes.

The terms_job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
thatis dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize thata program by itselfisnot a process; a program s a passive
entity, such as a file containing a list of instructions stored on disk (often called
an executable file), whereas a process is an active entity, with a program counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (as in prog. exe or a.out.)

R max
- T stack

heap

data

text

- ~_

A

- Figure 3.1 Process in memory..’

3.1 Irocess Comosnt 103

EAR

interrupt

admitted

scheduler dispatch

I/0 or event completion I/O or event wait

Figure 3.2 Diagram of process state.

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,
several users may be running different copies of the mail program, or the same
user may invoke many copies of the Web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It is also common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

= New. The process is being created.
Running. Instructions are being executed.

Waiting. The process is waiting for some event to occur (such as an 1/0
completion or reception of a signal).

Ready. The process is waiting to be assigned to a processor.

Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and waiting, however. The state diagram corresponding
to these states is presented in Figure 3.2.

3.1.3 Process Control Block

Each process is represented in the operating system by a process control block
(PCB)—also called a task control block. A PCB is shown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

104

Chapter 3 “rocess Concept

process state

process number

program counter

registers

memory limits

list of open files

Figure 3.3 Process control block (PCB).

o Process state. The state may be new, ready, running, waiting, halted, and
S0 Or.

¢ Program counter. The counter indicates the address of the next instruction
to be executed for this process.

¢ CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

> Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

> Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

1/0 status information. This information includes the list of I/0 devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one

3.2

3.2 scheduling 105
process Py operating system process P,
interrupt or system call
executing ﬂ]
1) ‘ save state into PCB, }
. idle
;reload state from PCB1| X
ridle interrupt or system call executing
l ~— Y
[save state into PCB, ‘
: idle
) *reload state from PCBO}

executing 1/[__

Figure 3.4 Diagram showing CPU switch from process to process.

task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
threads of execution and thus to perform more than one task at a time. On a
system that supports threads, the PCB is expanded to include information for
each thread. Other changes throughout the system are also needed to support
threads. Chapter 4 explores multithreaded processes in detail.

The objective of multiprogramming is to have some process running at all
times, to maximize CPU utilization. The objective of time sharing is to switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be rescheduled.

3.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which consists
of all processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.

106 Chapter 3

PROCESS REPRESENTATION IN LINUX

The process control block in the Linux operating system is represented
by the C structure task_struct. This structure contains all the necessary
information for representing a process, including the state of the process,
scheduling and memory-management information, list of open files, and
pointers to the process’s parent and any of its children. (A process’s parent is
the process that created it; its children are any processes that it creates.) Some
of these fields include:

pid.t pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */
struct task.struct *parent; /* this process’s parent x*/
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files x*/
struct mm_struct *mm; /* address space of this process */

Por example, the state of a process is represented by the field long state
in this structure. Within the Linux kernel, all active processes are represented
using a doubly linked list of task_struct, and the kernel maintains a pointer
— current—to the process currently executing on the system. This is shown
in Figure 3.5.

7N

R WA

struct task_struct
process information

struct task_struct
process information

struct task_struct
process information

3
.

xS

~

current
(currently executing proccess)

Figure 3.5 Active processes in Linux.

As an illustration of how the kernel might manipulate one of the fields in
the task_struct for a specified process, let’s assume the system would like
to change the state of the process currently running to the value new_state.
If current is a pointer to the process currently executing, its state is changed
with the following:

current->state = new_state;

This queue is generally stored as a linked list. A ready-queue header contains
pointers to the first and final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

3.2 rocsos Doneculing 107

queue header PCB;, PCB,
ready head =
queue tail registers registers
mag head —+——=
tape - -
unit 0 el =
{nag head T—=
ape
unitp1 tail S PCB; PCB,, PCBy
/ i
disk head 1
unit 0 tail <
PCBs
terminal head =

unit 0 tail 1

Figure 3.6 The ready queue and various /O device queues.

The system also includes other queues. When a process is allocated the
CPU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an I/0 request.
Suppose the process makes an I/0O request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
I/0O request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular I/0 device is called a
device queue. Each device has its own device queue (Figure 3.6).

A common representation of process scheduling is a queueing diagram,
such as that in Figure 3.7. Each rectangular box represents a queue. Two types
of queues are present: the ready queue and a set of device queues. The circles
represent the resources that serve the queues, and the arrows indicate the flow
of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CPU
and is executing, one of several events could occur:

The process could issue an1/0 request and then be placed in an1/O queue.

The process could create a new subprocess and wait for the subprocess’s
termination.

The process could be removed forcibly from the CPU, as a result of an
interrupt, and be put back in the ready queue.

108

Chapter 3 voozoc Jonteit

-
ready queue CPU
@ I/O queue /O request |«
time slice
expired

child fork a
executes child

m wait for an

0oCccurs interrupt

Figure 3.7 Queueing-diagram representation of process scheduling.

In the first two cases, the process eventually switches from the waiting state
to the ready state and is then put back in the ready queue. A process continues
this cycle until it terminates, at which time it is removed from all queues and
has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes
from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typically a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CPU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CPU
frequently. A process may execute for only a few milliseconds before waiting
for an I/0 request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CPU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked

aling 109

only when a process leaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution.

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either [/O bound or CPU bound. An
I/0-bound process is one that spends more of its time doing I/0O than it spends
doing computations. A CPU-bound process, in contrast, generates 1/0 requests
infrequently, using more of its time doing computations. Itis important that the
long-term scheduler select a good process mix of I/O-bound and CPU-bound
processes. If all processes are 1/0 bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the I/0 waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the
best performance will thus have a combination of CPU-bound and 1/0-bound
processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often haveno long-term scheduler but simply put every new processin
memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals)
or on the self-adjusting nature of human users. If performance declines to
unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.8. The key idea behind a medium-term scheduler
is that sometimes it can be advantageous to remove processes from mem-
ory (and from active contention for the CPU) and thus reduce the degree
of multiprogramming. Later, the process can be reintroduced into memory,
and its execution can be continued where it left off. This scheme is called
swapping. The process is swapped out, and is later swapped in, by the
medium-term scheduler. Swapping may be necessary to improve the pro-
cess mix or because a change in memory requirements has overcommitted
available memory, requiring memory to be freed up. Swapping is discussed in
Chapter 8.

swap in partially executed swap out
swapped-out processes

ready quee __.._.end

Go\ YO waiting
U queues

Figure 3.8 Addition of medium-term scheduling to the queueing diagram.

110

3.3

Chapter 3 Procese Concept

3.2.3 Context Switch

Asmentioned in Section 1.2.1, interrupts cause the operating system to change
a CPU from its current task and to run a kernel routine. Such operations happen
frequently on general- purpose systems When an interrupt occurs, the system
needs to save the current cczzest of the process running on the CPU so that
it can restore that context when its processing is done, essentially suspending
the process and then resuming it. The context is represented in the PCB of the
process; it includes the value of the CPU registers, the process state (see Flgure
3.2), and memory-management information. Generically, we perform a ‘
of the current state of the CPU, be it in kernel or user mode, and then a
-zgfore to resume operations.

Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a contesxt ewiich. When a context switch occurs, the kernel saves the
context of the old process in its PCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store all registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

[
2
[l

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.

Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier

3.3 Lmersions onn CrLosfsss 111

(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes—including
pageout and fsflush. These processes are responsible for managing memory
and file systems. The sched process also creates the init process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of init—inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows session
(Xsession), which in turns creates the sdt_shel process. Below sdt_shel, a
user’s command-line shell —the C-shell or csh—is created. In this command-
line interface, the user can then invoke various child processes, such as the 1s
and cat commands. We also see a csh process with pid of 7778 representing a
user who has logged onto the system using telnet. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, we can obtain a listing of processes by using the ps command. For
example, the command ps -el will list complete information for all processes
currently active in the system. It is easy to construct a process tree similar to
what is shown in Figure 3.9 by recursively tracing parent processes all the way
to the init process.

In general, a process will need certain resources (CPU time, memory, files,
1/0 devices) to accomplish its task. When a process creates a subprocess, that

dtlogin
pid = 251
Xsession
pid = 294

Csh sdt_shel
pid = 7778 pid = 340
Csh
pid = 1400

Netscape l emacs
pid = 7785 pid = 8105
cat
pid = 2536

Figure 3.9 A tree of processes on a typical Solaris system.

telnetdaemon
pid = 7776

112

Chapter 3 rrocezs Concest

subprocess may be able to obtain its resources directly from the operating
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent’s
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a
terminal. When it is created, it will get, as an input from its parent process,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

The parent continues to execute concurrently with its children.

N

The parent waits until some or all of its children have terminated.
There are also two possibilities in terms of the address space of the new process:

The child process is a duplicate of the parent process (it has the same
program and data as the parent).

The child process has a new program loaded into it.

£\ 3

To illustrate these differences, let’s first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,
which is a unique integer. A new process is created by the fork() system
call. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily with
its child process. Both processes (the parent and the child) continue execution
at the instruction after the fork(), with one difference: the return code for
the fork () is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

Typically, the exec() system call is used after a fork() system call by
one of the two processes to replace the process’s memory space with a new
program. The exec () system call loads a binary file into memory (destroying
the memory image of the program containing the exec() system call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create more children; or,
if it has nothing else to do while the child runs, it can issue a wait () system
call to move itself off the ready queue until the termination of the child.

The C program shown in Figure 3.10 illustrates the UNIX system calls
previously described. We now have two different processes running copies of
the same program. The only difference is that the value of pid (the process

3.3 Operaticns on Fro co 113

]

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid_t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/ls","1s" ,NULL);

}

else { /x parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return O;

}

Figure 3.10 Creating a separate process using the UNIX fork () system call.

identifier) for the child process is zero, while that for the parent is an integer
value greater than zero (in fact, it is the actual pid of the child process). The
child process inherits privileges and scheduling attributes from the parent,
as well certain resources, such as open files. The child process then overlays
its address space with the UNIX command /bin/1s (used to get a directory
listing) using the execlp() system call (execlp() is a version of the exec()
system call). The parent waits for the child process to complete with the wait ()
system call. When the child process completes (by either implicitly or explicitly
invoking exit ()) the parent process resumes from the call to wait (), where it
completes using the exit () system call. This is also illustrated in Figure 3.11.

parent wait resumes

Figure 3.11 Process creation using fork () system call.

114 (3hapter3 Frocegs Uonesns

#include <stdio.h>
#include <windows.h>

int main(V0OID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

// allocate memory
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

// create child process
if (!CreateProcess(NULL, // use command line
"C:\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don’t inherit process handle
NULL, // don’t inherit thread handle
FALSE, // disable handle inheritance
0, // no creation flags
NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si,
&pi))
{
fprintf(stderr, "Create Process Failed");
return —1;
}
// parent will wait for the child to complete
WaitForSingleObject(pi.hProcess, INFINITE);
printf ("Child Complete");

// close handles
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

Figure 3.12 Creating a separate process using the Win32 API.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Win32 API using the CreateProcess () function,
whichissimilar tofork () inthata parent creates a new child process. However,
whereas fork () has the child process inheriting the address space of its parent,
CreateProcess () requires loading a specified program into the address space
of the child process at process creation. Furthermore, whereas fork () is passed
no parameters, CreateProcess () expects no fewer than ten parameters.

The C program shown in Figure 3.12 illustrates the CreateProcess()
function, which creates a child process that loads the application mspaint . exe.
We opt for many of the default values of the ten parameters passed to
CreateProcess(). Readers mterested in pursuing the details of process

3.3 Tp

115

creation and management in the Win32 API are encouraged to consult the
bibliographical notes at the end of this chapter.

Two parameters passed to CreateProcess() are instances of the START-
UPINFO and PROCESS_INFORMATION struictures. STARTUPINFO specifies many
properties of the new process, such as window size and appearance and han-
dles to standard input and output files. The PROCESS INFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.
We invoke the ZeroMemory () function to allocate memory for each of these
structures before proceeding with CreateProcess().

The first two parameters passed to CreateProcess() are the application
name and command-line parameters. If the application name is NULL (as
it is in this case), the command-line parameter specifies the application to
load. In this instance, we are loading the Microsoft Windows mspaint.exe
application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles as well as specifying no creation flags.
We also use the parent’s existing environment block and starting directory.
Last, we provide two pointers to the STARTUPINFO and PROCESS_ INFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wait() system
call. The equivalent of this in Win32 is WaitForSingleObject (), which is
passed a handle of the child process—pi.hProcess—and waits for this
process to complete. Once the child process exits, control returns from the
WaitForSingleObject () function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its final statement and asks the
operating system to delete it by using the exit () system call. At that point, the
process may return a status value (typically an integer) to its parent process
(via the wait() system call). All the resources of the process—including
physical and virtual memory, open files, and 1/0 buffers—are deallocated
by the operating system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess() in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other’s jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

o The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

o The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

116

3.4

Chapter 3 Process Concept

Some systems, including VMS, do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit () system call; its parent process
may wait for the termination of a child process by using the wait () system
call. The wait () system call returns the process identifier of a terminated child
so that the parent can tell which of its children has terminated. If the parent
terminates, however, all its children have assigned as their new parent the
init process. Thus, the children still have a parent to collect their status and
execution statistics.

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
it it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or I/O channels).

O

Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an interprocess communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged

3.4

117

process A | LY/ — process A

shared

process B tgm process B

kernel

(a) (b)

Figure 3.13 Communications models. (a) Message passing. (b) Shared memory.

between the cooperating processes. The two communications models are
contrasted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication. Shared memory is faster than message passing, as message-
passing systems are typically implemented using system calls and thus require
the more time-consuming task of kernel intervention. In contrast, in shared-
memory systems, system calls are required only to establish shared-memory
regions. Once shared memory is established, all accesses are treated as routine
memory accesses, and no assistance from the kernel is required. In the
remainder of this section, we explore each of these IPC models in more detail.

3.41 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-
memory segment. Other processes that wish to communicate using this shared-
memory segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process’s
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
datain the shared areas. The form of the data and thelocation are determined by
these processes and are not under the operating system’s control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

118

Chapter3 Drocess Concept

To illustrate the concept of cooperating processes, let’s consider the
producer—consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, may produce
object modules, which are consumed by the loader. The producer-consumer
problem also provides a useful metaphor for the client—server paradigm. We
generally think of a server as a producer and a client as a consumer. For
example, a Web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client Web browser requesting the
resource.

One solution to the producer—consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared
by the producer and consumer processes. A producer can produce one item
while the consumer is consuming another item. The producer and consumer
must be synchronized, so that the consumer does not try to consume an item
that has not yet been produced.

Two types of buffers canbe used. The zribounded buffer placesno practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The bocunded bufferassumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let’s look more closely at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10
typedef struct {
}item;

item buffer [BUFFER_SIZE];
int in = 0;
int out = 0;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ((in + 1) % BUFFER_SIZE) == out.

The code for the producer and consumer processes is shown in Figures 3.14
and 3.15, respectively. The producer process has a local variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable nextConsumed in which the item to be consumed is stored.

This scheme allows at most BUFFER SIZE — 1 items in the buffer at the same
time. We leave it as an exercise for you to provide a solution where BUFFER SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX API for shared memory.

3.4 Inicrprocess omniunication 119
item nextProduced;

while (true) {
/* produce an item in nextProduced */
while (((in + 1) % BUFFERSIZE) == out)
; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFERSIZE;

Figure 3.14 The producer process.

One issue this illustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
facility.

Message passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides atleast two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task

item nextConsumed;

while (true) {
while (in == out)
; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER.SIZE;
/* consume the item in nextConsumed */

Figure 3.15 The consumer process.

120

Chapter 3 rrocese Toncept

of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. This is a common kind of tradeoff seen throughout operating-
system design.

If processes P and () want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. This link can be implemented in a variety of ways. We are concerned here
not with the link’s physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logical
implementation. Here are several methods for logically implementing a link
and the send () /receive () operations:

¢ Direct or indirect communication
¢ Synchronous or asynchronous communication

¢ Automatic or explicit buffering
We look at issues related to each of these features next.

3.421 Naming

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send () and receive() primitives are defined as:

send (P, message) —Send a message to process P.
o receive(Q, message) —Receive a message from process Q.

A communication link in this scheme has the following properties:

- A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other’s
identity to communicate.

> Alink is associated with exactly two processes.
Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asynmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send () and receive () primitives are defined as follows:

send (P, message) —Send a message to process P.

receive(id, message) —Receive a message from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining all other process definitions.
All references to the old identifier must be found, so that they can be modified

3.4 lnferprocess Copim

wmicarion 121

to the new identifier. In general, any such hard-coding techniques, where
identifiers mustbe explicitly stated, are less desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and from which messages canbe removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.
Two processes can communicate only if the processes have a shared mailbox,
however. The send () and receive () primitives are defined as follows:

¢ send(A, message) —Send amessage to mailbox 4.
© receive (A, message) —Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

A link is established between a pair of processes only if both members of
the pair have a shared mailbox.

A link may be associated with more than two processes.

Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes P, P>, and P; all share mailbox A. Process
Py sends a message to A, while both P, and Ps execute a receive () from A
Which process will receive the message sent by P;? The answer depends on
which of the following methods we choose:

¢ Allow a link to be associated with two processes at most.
> Allow at most one process at a time to execute a receive () operation.

= Allow the system to select arbitrarily which process will receive the
message (that is, either P, or Ps, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin, where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (which can
only receive messages through this mailbox) and the user (which can only
send messages to the mailbox). Since each mailbox has a unique owner, there
can be no confusion about which process should receive a message sent to
this mailbox. When a process that owns a mailbox terminates, the mailbox
disappears. Any process that subsequently sends a message to this mailbox
must be notified that the mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following;:

122

Chapter 3 vooness Conoss

Create a new mailbox.
Send and receive messages through the mailbox.

Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision
could result in multiple receivers for each mailbox.

3.4.2.2 Synchronization

Communication between processes takes place through calls to send() and
receive () primitives. There are different design options for implementing
each primitive. Message passing may be either blocking or nonblocking—
also known as synchronous and asynchronous.

Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

> Nonblocking send. The sending process sends the message and resumes
operation.

Blocking receive. The receiver blocks until a message is available.

Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send () and receive () are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer—consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send () call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive (), it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system 10 algorithms, as you will see throughout this text.

3.4.2.3 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basically, such queues can be
implemented in three ways:

o Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

Bounded capacity. The queue has finite length n; thus, at most 7 messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without

3.5

123

waiting. The link’s capacity is finite, however. If the link is full, the sender
must block until space is available in the queue.

¢ Unbounded capacity. The queue’s length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

i S A o e [T
e et L

In this section, we explore three different IPC systems. We first cover the
POSIX API for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as amechanism for providing certain types of message passing.

3.5.1 An Example: POSIX Shared Memory

Several IPC mechanisms are available for POSIX systems, including shared
memory and message passing. Here, we explore the POSIX AFI for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment_id = shmget (IPC_PRIVATE, size, SIRUSR | SIWUSR);

This first parameter specifies the key (or identifier) of the shared-memory
segment. If this is set to IPC_PRIVATE, a new shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared-memory
segment. Finally, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used —that is, for reading, writing,
or both. By setting the mode to SIRUSR | SIWUSR, we are indicating that the
owner may read or write to the shared-memory segment. A successful call to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach)system call.
The call to shmat () expects three parameters as well. The first is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
onthe user’sbehalf. The third parameter identifies a flag that allows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region. We attach
a region of shared memory using shmat () as follows:

shared memory = (char *) shmat(id, NULL, 0);

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

124

Chapter3 Process Concept

Once the region of shared memory is attached to a process’s address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf (shared memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment.

Typically, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address
space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmct1() system call, which is passed the identifier of the shared segment
along with the flag IPC_RMID.

The program shown in Figure 3.16 illustrates the POSIX shared-memory
APIjust discussed. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POSIX shared-memory API in the programming
exercises at the end of this chapter.

3.5.2 An Example: Mach

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and all intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called ports in Mach.

Evensystem calls are made by messages. When a task is created, two special
mailboxes—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
calls are needed for message transfer. The msg_send () call sends a message
to a mailbox. A message is received via msg_receive (). Remote procedure
calls (RPCs) are executed via msg_rpc (), which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems—hence the
term remote.

The port_allocate() system call creates a new mailbox and allocates
space for its queue of messages. The maximum size of the message queue

125

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the identifier for the shared memory segment */

int segment.id;

/* a pointer to the shared memory segment */

char *shared memory;

/* the size (in bytes) of the shared memory segment */
const int size = 4096;

/* allocate a shared memory segment */
segment_id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

/* attach the shared memory segment */
shared memory = (char *) shmat(segment_id, NULL, 0);

/* write a message to the shared memory segment */
sprintf (shared memory, "Hi there!");

/* now print out the string from shared memory */
1% g ¥y
printf ("*%s\n", shared_memory);

/* now detach the shared memory segment */
shmdt (shared_memory) ;

/* now remove the shared memory segment */
shmctl (segment _id, IPC_RMID, NULL);

return 0;

—

Figure 3.16 C program illustrating POSIX shared-memory AP!.

defaults to eight messages. The task that creates the mailbox is that mailbox’s
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox’s message queue is initially empty. As messages are sent to
the mailbox, the messages are copied into the mailbox. All messages have the
same priority. Mach guarantees that multiple messages from the same sender
are queued in first-in, first-out (FIFO) order but does not guarantee an absolute
ordering. For instance, messages from two senders may be queued in any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so

126

Chapter 3 irocess Con

the mailbox name of the sender is passed on to the receiving task, which can
use it as a “return address.”

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system—such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themselves are flexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.
z. Wait at most 7 milliseconds.
2. Donot wait at all but rather return immediately.

£, Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which that message is being
sent is full. When the message can be put in the mailbox, a message is
sent back to the sender; only one such message to a full mailbox can be
pending at any time for a given sending thread.

The final option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set from which a
message is to be received. A mailbox setis a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A port_status() system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most 7 milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is also suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages; the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender’s message into the receiver’s address
space. The message itself is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
orn our website.

3.5 mvmgusiec i oo Dumians 127

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments, or subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the - ~zz. crocedores
caiio LI facrhty The LPC in Windows XP commumcates between two
processes on the same machine. It is similar to the standard RPC mechanism that
is widely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
are really the same but are given different names according to how they are
used.

Connection ports are named objects and are visible to all processes; they
give applications a way to set up communication channels (Chapter 22). The
communication works as follows:

= The client opens a handle to the subsystem’s connection port object.
> The client sends a connection request.

= Theserver creates two private communication ports and returns the handle
to one of them to the client.

The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies.

Windows XP uses two types of message-passing techniques over a port that
the client specifies when it establishes the channel. The simplest, which is used
for small messages, uses the port’s message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a g=ciicm ooi=cf, which sets up a region of shared memory. The chent has to
decrde when it sets up the channel Whether or not it will need to send a large
message. If the client determines that it does want to send large messages, 1t
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of local procedure calls in Windows XP is shown in Figure 3.17.

It is important to note that the LPC facility in Windows XP is not part of
the Win32 AFT and hence is not visible to the application programmer. Rather,
applications using the Win32 API invoke standard remote procedure calls.

128

3.6

Chapter 3 “rocess Concent

Client Server
Connection
request Connection Handle
Port
Handle Client

Communication Port

il

Server Handle
Communication Port

Shared
< Section Object
(< = 256 bytes)

A

Figure 3.17 Local procedure calls in Windows XP.

When the RPC is being invoked on a process on the same system, the RPC is
indirectly handled through a local procedure call. LPCs are also used in a few
other functions that are part of the Win32 APL

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tionin client-server systems (Section 1.12.2) as well. In this section, we explore
three other strategies for communication in client—server systems: sockets,
remote procedure calls (RPCs), and pipes.

3.6.1 Sockets

A zccizzt is defined as an endpoint for communication. A pair of processes
communicating over a network employ a pair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client—server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, FIP, and HTTP) listen
to well-known ports (a telnet server listens to port 23; an FIP server listens to
port 21; and a Web, or HTTP, server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned
a port by its host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a Web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the Web server. This situation is illustrated in Figure 3.18. The packets
traveling between the hosts are delivered to the appropriate process based on
the destination port number.

129

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

Figure 3.18 Communication using sockets.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the same Web server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter

Java provides three different types of sockets. - " it
gcolczie areimplemented with the Socket class. Jomrne
use the DatagramSocket class. Finally, the MulticastSocketclassisa subclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept () method. The server blocks on the accept () method
waiting for a client to request a connection. When a connection request is
received, accept () returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes a PrintWriter object thatit will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print () and println() methods for output. The server
process sends the date to the client, calling the method printIln(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the

130 Chapter 3 roozoz Concand

import java.net.*;
import java.io.*;

public class DateServer

{

public static void main(Stringl] args) {

try {
ServerSocket sock = new ServerSocket (6013);

// now listen for connections
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

// write the Date to the socket
pout.println(new java.util.Date().toString());

// close the socket and resume
// listening for connections
client.close();

}

catch (I0Exception ioe) {
System.err.println(ice);
}

}
}

Figure 3.19 Date server.

Java program shown in Figure 3.20. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
I/0 statements. After it has received the date from the server, the client closes
the socket and exits. The IP address 127.0.0.1 is a special IP address known as the
.ccooezcs. When a computer refers to IP address 127.0.0.1, it is referring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as www.westminstercollege.edu, can be used as well.

Communication using sockets—although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and pipes.

3.6

import java.net.x*;
import java.io.*;

public class DateClient

{

public static void main(String[] args) {
try {
//make connection to server socket
Socket sock = new Socket("127.0.0.1",6013);

InputStream in = sock.getInputStream();
BufferedReader bin = new
BufferedReader (new InputStreamReader(in));

// read the date from the socket

String line;

while ((line = bin.readLine()) '= null)
System.out.println(line) ;

// close the socket connection
sock.close();

}

catch (IOException ioe) {
System.err.println(ioce);

}

}
}

Figure 3.20 Date client.

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC paradigm, which
we discussed briefly in Section 3.5.2. The RPC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 3.4, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RPC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RPC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed asrequested, and any outputis sent back to the requester in a separate
message.

Aportissimply anumberincluded at the start of a message packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network services it supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,

132

Chapter 3 Frocess Con

if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RPC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RPC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RPC system hides the details
that allow communication to take place by providing a sius on the client side.
Typically, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RPC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
a network. The stub then transmits a message to the server using message
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) store the most significant byte
first, while other systems (known as little-endian) store the least significant
byte first. Neither order is “better” per se; rather, the choice is arbitrary within
a computer architecture. To resolve differences like this, many RPC systems
define a machine-independent 1epresentat10n of data. One such representation
is known as exiernal date representation (XOR). On the client side, parameter
marshalling involves converting the machine-dependent data into XDR before
they are sent to the server. On the server side, the XDR data are unmarshalled
and converted to the machine-dependent representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fail only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the “exactly once” functionality, but it is more difficult to
implement.

First, consider “at most once”. This semantic can be implemented by
attaching a timestamp to each message. The server must keep a history of
all the timestamps of messages it has already processed or a history large
enough to ensure that repeated messages are detected. Incoming messages
that have a timestamp already in the history are ignored. The client can then
send a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For “exactly once,” we need to remove the risk that the server will never
receive the request. To accomplish this, the server must implement the “at
most once” protocol described above but must also acknowledge to the client
that the RPC call was received and executed. These ACK messages are common
throughout networking. The client must resend each RPC call periodically until
it receives the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place

during link, load, or execution time (Chapter 8) so that a procedure call’s name
is replaced by the memory address of the procedure call. The RPC scheme
requires a similar binding of the client and the server port, but how does a client
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RPC
call has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typically, an
operating system provides a rendezvous (also called a = er) daemon
on a fixed RPC port. A client then sends a message containing the name of
the RPC to the rendezvous daemon requesting the port address of the RPC it
needs to execute. The port number is returned, and the RPC calls can be sent
to that port until the process terminates (or the server crashes). This method
requires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.21 shows a sample interaction.

client messages server

user calls kernel
to send RPC
message to
procedure X

From: client

kernel sends matchmaker

m ¢ To: server !

e;sshageko ¢ Port: matchmaker receives look
matchmaker to Re: address message, looks
find port number for RPC X up answer

From: server

kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port P

Port: P

From: client daemon

kernel sends To: server listening to
RPC Port: port P port P receives
<contents> message
From: RPC daemon
kernel receives Port: P processes
reply, passes To: client request and

it to user processes send

output

Port: kernel
<output>

Figure 3.21 Execution of a remote procedure call (RPC).

134

Chapter3 =

The RPC scheme is useful in implementing a distributed file system
(Chapter 17). Such a system can be implemented as a set of RPC daemons
and clients. The messages are addressed to the distributed file system port on a
server on which a file operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read write, rename,
delete, or status, corresponding to the usual flle related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.

3.6.3 Pipes

A pipe acts as a conduit allowing two processes to communicate. Pipes were
one of the first IPC mechanisms in early UNTX systems and typically provide one
of the simpler ways for processes to communicate with one another, although
they also have some limitations. In implementing a pipe, four issues must be
considered:

. Does the pipe allow unidirectional communication or bidirectional com-
munication?

)

If two-way communication is allowed, is it half duplex (data can travel
only one way at a time) or full duplex (data can travel in both directions
at the same time)?

Q3

Must a relationship (such as parent—child) exist between the communicat-
ing processes?

e

Can the pipes communicate over a network, or must the communicating
processes reside on the same machine?

In the following sections, we explore two common types of pipes used on both
UNIX and Windows systems.

3.6.3.1 Ordinary Pipes

Ordinary pipes allow two processes to communicate in standard producer—
consumer fashion; the producer writes to one end of the pipe (the wzite-znnc),
and the consumer reads from the other end (the rez2~-2nc). As aresult, ordinary
pipes are unidirectional, allowing only one-way communication. If two-way
communication is required, two pipes must be used, with each pipe sending
data in a different direction. We next illustrate constructing ordinary pipes
on both UNIX and Windows systems. In both program examples, one process
writes the message Greetings to the pipe, while the other process reads this
message from the pipe.
On UNIX systems, ordinary pipes are constructed using the function

pipe(int £d[1)

This function creates a pipe that is accessed through the int fd[l file
descriptors: £d[0] is the read-end of the pipe, and £d[1] is the write end.

3.6 Cornourcostion Do liiamie Dorves Dosinons 135

parent child
fd(0) fd(1) fd(0) fd(1)

l |
- (-

Figure 3.22 File descriptors for an ordinary pipe.

UNIX treats a pipe as a special type of file; thus, pipes can be accessed using
ordinary read () and write () system calls.

An ordinary pipe cannot be accessed from outside the process that creates
it. Thus, typically a parent process creates a pipe and uses it to communicate
with a child process it creates via fork (). Recall from Section 3.3.1 that a child
process inherits open files from its parent. Since a pipe is a special type of file,
the child inherits the pipe from its parent process. Figure 3.22 illustrates the
relationship of the file descriptor £d to the parent and child processes.

In the UNIX program shown in Figure 3.23, the parent process creates a
pipe and then sends a fork () call creating the child process. What occurs after
the fork () call depends on how the data are to flow through the pipe. In this
instance, the parent writes to the pipe and the child reads from it. It isimportant
to notice that both the parent process and the child process initially close their
unused ends of the pipe. Although the program shown in Figure 3.23 does not
require this action, it is an important step to ensure that a process reading from
the pipe can detect end-of-file (read () returns 0) when the writer has closed
its end of the pipe.

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define BUFFER_SIZE 25
#define READ_END O
#define WRITE_END 1

int main(void)

{

char write msg[BUFFER_SIZE] = "Greetings";
char read msg[BUFFER SIZE];

int £d4[2];

pid_t pid;

program continues in Figure 3.24

Figure 3.23 Ordinary pipes in UNIX.

136

Chapter 3 ~uccess Concesnt

/* create the pipe */

if (pipe(fd) == -1) {
fprintf (stderr,"Pipe failed");
return 1;

}

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */
close(fd[READ_END]) ;

/* write to the pipe */
write(fd[WRITE_END], writemsg, strlen(writemsg)+1);

/* close the write end of the pipe */
close (fd[WRITE_END]) ;

else { /* child process */
/* close the unused end of the pipe */
close(fd[WRITE_END]) ;

/* read from the pipe */
read (fd[READ_END], read msg, BUFFER .SIZE);
printf ("read %s",read msg);

/* close the write end of the pipe */
close(fd [READ_END]) ;

}

return O;

Figure 3.24 Continuation of Figure 3.23 program.

Ordinary pipes on Windows systems are termed z=or7mzome “izzs, and
they behave similarly to their UNIX counterparts: they are unidirectional and
employ parent—child relationships between the communicating processes.
In addition, reading and writing to the pipe can be accomplished with the
ordinary ReadFile() and WriteFile () functions. The Win32 API for creating
pipesis the CreatePipe () function, which is passed four parameters: separate
handles for (1) reading and (2) writing to the pipe, as well as (3) an instance of
the STARTUPINFO structure, which is used to specify that the child process is to

3.6 ¢

137

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

#define BUFFER _SIZE 25
int main(V0ID)

HANDLE ReadHandle, WriteHandle;
STARTUPINFQO si;

PROCESS_INFORMATION pi;

char message[BUFFER_SIZE] = "Greetings";
DWORD written;

rogram continues in Figure 3.26
prog &

Figure 3.25 Windows anonymous pipes — parent process.

inherit the handles of the pipe. Furthermore, (4) the size of the pipe (in bytes)
may be specified.

Figure 3.25 illustrates a parent process creating an anonymous pipe for
communicating with its child. Unlike UNIX systems, in which a child process
automatically inherits a pipe created by its parent, Windows requires the
programmer to specify which attributes the child process will inherit. This is
accomplished by first initializing the SECURITY_ATTRIBUTES structure to allow
handles to be inherited and then redirecting the child process’s handles for
standard input or standard output to the read or write handle of the pipe.
Since the child will be reading from the pipe, the parent must redirect the
child’s standard input to the read handle of the pipe. Furthermore, as the pipes
are half duplex, it is necessary to prohibit the child from inheriting the write
end of the pipe. Creating the child process is similar to the program in Figure
3.12, except that the fifth parameter is set to TRUE, indicating that the child
process is to inherit designated handles from its parent. Before writing to the
pipe, the parent first closes its unused read end of the pipe. The child process
that reads from the pipe is shown in Figure 3.27. Before reading from the pipe,
this program obtains the read handle to the pipe by invoking GetStdHandle ().

Note that ordinary pipes require a parent—child relationship between the
communicating processes on both UNIX and Windows systems. This means
that these pipes can be used only for communication between processes on the
same machine.

3.6.3.2 Named Pipes

Ordinary pipes provide a simple communication mechanism between a pair
of processes. However, ordinary pipes exist only while the processes are
communicating with one another. On both UNIX and Windows systems, once
the processes have finished communicating and terminated, the ordinary pipe
ceases to exist.

138 Chapter3 ~rooozg Ziioosg

/* set up security attributes allowing pipes to be inherited =*/
SECURITY_ATTRIBUTES sa = {sizeof (SECURITY_ATTRIBUTES) ,NULL,TRUE};
/* allocate memory */

ZeroMemory (&pi, sizeof(pi));

/* create the pipe */

if (!CreatePipe(&ReadHandle, &WriteHandle, &sa, 0)) {
fprintf (stderr, "Create Pipe Failed");
return 1;

}

/* establish the STARTINFO structure for the child process */
GetStartupInfo(&si);
si.hStdOutput = GetStdHandle (STD_OUTPUT HANDLE) ;

/* redirect standard input to the read end of the pipe */
si.h3tdInput = ReadHandle;
si.dwFlags = STARTF.USESTDHANDLES;

/* don’t allow the child to inherit the write end of pipe */
SetHandleInformation(WriteHandle, HANDLE_FLAG.INHERIT, 0);

/* create the child process */
CreateProcess(NULL, '"child.exe", NULL,NULL,
TRUE, /* inherit handles */
0, NULL,NULL, &si, &pi);

/* close the unused end of the pipe */
CloseHandle (ReadHandle) ;

/* the parent writes to the pipe */
if (!WriteFile(WriteHandle, message,BUFFERSIZE,&written,NULL))
fprintf (stderr, "Error writing to pipe.");

/* close the write end of the pipe */
CloseHandle (WriteHandle) ;

/* wait for the child to exit */
WaitForSingleObject(pi.hProcess, INFINITE);
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

return O;

}

Figure 3.26 Continuation of Figure 3.25 program.

Named pipes provide a much more powerful communication tool;
communication can be bidirectional, and no parent—child relationship is
required. Once a named pipe is established, several processes can use it for

£ e P DN P S T R s P
3.6 ORI E RO L0 NSt OV

#include <stdio.h>
#include <windows.h>

#tdefine BUFFER.SIZE 25

int main(VOID)

{

HANDLE Readhandle;
CHAR buffer [BUFFER SIZE] ;
DWORD read;

/* get the read handle of the pipe */
ReadHandle = GetStdHandle (STDINPUT_HANDLE) ;

/* the child reads from the pipe */

if (ReadFile(ReadHandle, buffer, BUFFERSIZE, &read, NULL))
printf("child read %s",buffer);

else
fprintf (stderr, "Error reading from pipe");

return 0;

Figure 3.27 Windows anonymous pipes — child process.

communication. In fact, in a typical scenario, a named pipe has several
writers. Additionally, named pipes continue to exist after communicating
processes have finished. Both UNIX and Windows systems support named
pipes, although the details of implementation vary greatly. Next, we explore
named pipes in each of these systems.

Named pipes are referred to as FIFOs in UNIX systems. Once created, they
appear as typical files in the file system. A FIFO is created with the mkfifo ()
system call and manipulated with the ordinary open(), read(), write(),
and close () system calls. It will continue to exist until it is explicitly deleted
from the file system. Although FIFOs allow bidirectional communication, only
half-duplex transmission is permitted. If data must travel in both directions,
two FIFOs are typically used. Additionally, the communicating processes must
reside on the same machine; sockets (Section 3.6.1) must be used if intermachine
cormmunication is required.

Named pipes on Windows systems provide a richer communication mech-
anism than their UNIX counterparts. Full-duplex communication is allowed,
and the communicating processes may reside on either the same or different
machines. Additionally, only byte-oriented data may be transmitted across a
UNIX FIFO, whereas Windows systems allow either byte- or message-oriented
data. Named pipes are created with the CreateNamedPipe () function, and a
client can connect to a named pipe using ConnectNamedPipe (). Communi-
cation over the named pipe can be accomplished using the ReadFile () and
WriteFile() functions.

140

3.7

Chapter 3

PIPES IN PRACTICE

Pipes are used quite often in the UNIX command-line environment for
situations in which the output of one command serves as input to the
second. For example, the UNIX 1s command produces a directory listing.
For especially long directory listings, the output may scroll through several
screens. The command more manages output by displaying only one screen
of output at a time; the user must press the space bar to move from one screen
to the next. Setting up a pipe between the 1s and more commands (which
are running as individual processes) allows the output of 1s to be delivered
as the input to more, enabling the user to display a large directory listing a
screen at a time. A pipe can be constructed on the command line using the |
character. The complete command is

1s | more

In this scenario, the 1s command serves as the producer, and its output is
consumed by the more command.

Windows systems provide a more command for the DOS shell with
functionality similar to that of its UNIX counterpart. The DOS shell also uses
the | character for establishing a pipe. The only difference is that to get a
directory listing, DOS uses the dir command rather than 1s. The equivalent
command in DOS to what is shown above is

dir | more

A process is a program in execution. As a process executes, it changes state. The
state of a process is defined by that process’s current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: 1I/0O request queues
and the ready queue. The ready queue contains all the processes that are ready
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
allocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are several reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

141

[4¥]
)
[43]
D
oy

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method allows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client—server systems may use (1) sockets, (2) remote
procedure calls (RPCs), or (3) pipes. A socket is defined as an endpoint for
communication. A connection between a pair of applications consists of a
pair of sockets, one at each end of the communication channel. RPCs are
another form of distributed communication. An RPC occurs when a process
(or thread) calls a procedure on a remote application. Ordinary pipes allow
communication between parent and child processes, while named pipes permit
unrelated processes to communicate with one another.

3.1 What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

Synchronous and asynchronous communication

a
b. Automatic and explicit buffering

N

Send by copy and send by reference

d. Fixed-sized and variable-sized messages

3.2 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the “at most once” or “exactly
once” semantic. Describe possible uses for a mechanism that has neither
of these guarantees.

3.3 Withrespecttothe RPC mechanism, consider the “exactly once” semantic.
Does the algorithm for implementing this semantic execute correctly
even if the ACK message back to the client is lost due to a network
problem? Describe the sequence of messages and discuss whether
“exactly once” is still preserved.

3.4 Palm OS provides no means of concurrent processing. Discuss three
major complications that concurrent processing adds to an operating
system.

142

Chapter 3 Process Concept

3.5

3.6

3.7

3.8

3.9

3.10

311

Describe the actions taken by a kernel to context-switch between
processes.

The Sun UltraSPARC processor has multiple register sets. Describe what
happens when a context switch occurs if the new context is already
loaded into one of the register sets. What happens if the new context is
in memory rather than in a register set and all the register sets are in
use?

Construct a process tree similar to Figure 3.9. To obtain process informa-
tion for the UNIX or Linux system, use the command ps -ael. Use the
command man ps to get more information about the ps command. On
Windows systems, you will have to use the task manager.

Give an example of a situation in which ordinary pipes are more suitable
than named pipes and an example of a situation in which named pipes
are more suitable than ordinary pipes.

Describe the differences among short-term, medium-term, and long-
term scheduling.

Including the initial parent process, how many processes are created by
the program shown in Figure 3.28?

Using the program in Figure 3.29, identify the values of pid at lines 4, B,
C, and D. (Assume that the actual pids of the parent and child are 2600
and 2603, respectively.)

#include <stdio.h>
#include <unistd.h>

int main()

{

/* fork a child process */
fork();

/* fork another child process */
fork();

/* and fork another */
fork();

return O;

}

Figure 3.28 How many processes are created?

143

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid_t pid, pidil;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

L

else if (pid == 0) { /* child process */
pidl = getpid(Q);
printf("child: pid = %d",pid); /* A */
printf("child: pidl = %d",pidl); /* B =/

else { /* parent process */
pidl = getpid(Q);
printf("parent: pid = %d",pid); /* C */
printf ("parent: pidl = %d",pidl); /* D */
wait (NULL) ;

}

return O;

Figure 3.29 What are the pid values?

3.12 Using the program shown in Figure 3.30, explain what the output will
be at Line A.

3.13 The Fibonacci sequence is the series of numbers 0,1,1,2,3.5,8,
Formally, it can be expressed as:

fibg =0
fiby =1
fibm = fl'b”,1 + fib/1—2

Write a C program using the fork() system call that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child

144

Chapter 3 Zrocess Concept

3.14

3.15

3.16

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()

{

pid_t pid;
pid = fork();

if (pid == 0) { /* child process */
value += 15; L o g
return 0;

t

else if (pid > 0) { /x parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
return O;

}
}

Figure 3.30 What output will be at Line A?

process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () call to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-megative number is passed on the command
line.

Repeat the preceding exercise, this time using the CreateProcess()
function in the Win32 APL In this instance, you will need to specify
a separate program to be invoked from CreateProcess(). It is this
separate program that will run as a child process outputting the
Fibonacci sequence. Perform necessary error checking to ensure that
anon-negative number is passed on the command line.

Modify the date server shown in Figure 3.19 so that it delivers random
jokes rather than the current date. Allow the jokes to contain multiple
lines. The date client shown in Figure 3.20 can be used to read the
multi-line jokes returned by the joke server.

An echo server echoes back whatever it receives from a client. For
example, if a client sends the server the string Hello there! the server
will respond with the exact data it received from the client—that is,
Hello there!

3.17

ORATTT
[o

Write an echo server using the Java networking API described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

¢ Read data from the socket into a buffer.
o Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The server shown in Figure 3.19 uses the java.io.BufferedReader
class. BufferedReader extends the java.io.Reader class, which is
used for reading character streams. However, the echo server cannot
guarantee that it will read characters from clients; it may receive binary
dataas well. Theclass java.io.InputStreamdeals with dataatthe byte
level rather than the character level. Thus, this echo server must use an
object that extends java.io.InputStream The read() method in the
java.lo.InputStream class returns —1 when the client has closed its
end of the socket connection.

In Exercise 3.13, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique allows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
will be reflected in the parent process as well.

This program will be structured using POSIX shared memory
as described in Section 3.5.1. The program first requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. This data structure will contain two items:
(1) a fixed-sized array of size MAX_SEQUENCE that will hold the Fibonacci
values and (2) the size of the sequence the child process is to generate—
sequence_size, where sequence_size < MAX_SEQUENCE. These items
can be represented in a struct as follows:

#define MAX_SEQUENCE 10

typedef struct {
long fib_sequence [MAX_SEQUENCE] ;
int sequence_size;

} shared data;

The parent process will progress through the following steps:

a. Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX_SEQUENCE.

b. Create a shared-memory segment of size shared_data.

c. Attach the shared-memory segment to its address space.

146

Chapter 3 Proces

3.18

3.19

3.20

€3]

a7 - e S
Concept

d. Setthe value of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait () system call to wait
for the child to finish.

. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child’s address space as well as the
parent’s. The child process will then write the Fibonacci sequence to
shared memory and finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait () system call; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

Design a program using ordinary pipes in which one process sends a
string message to a second process, and the second process reverses
the case of each character in the message and sends it back to the first
process. For example, if the first process sends the message Hi There,
the second process will return hI tHERE. This will require using two
pipes, one for sending the original message from the first to the second
process, and the other for sending the modified message from the second
back to the first process. You may write this program using either UNIX
or Windows pipes.

Design a file-copying program named FileCopy using ordinary pipes.
This program will be passed two parameters: the first is the name of
the file to be copied, and the second is the name of the copied file. The
program will then create an ordinary pipe and write the contents of the
file to be copied to the pipe. The child process will read this file from
the pipe and write it to the destination file. For example, if we invoke
the program as follows:

FileCopy input.txt copy.txt

the file input.txt will be written to the pipe. The child process will
read the contents of this file and write it to the destination file copy . txt.
You may write this program using either UNIX or Windows pipes.

Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure struct shmid_ds,

147

which is available in the /usr/include/sys/shm.h file. Some of the
fields in this structure include:

© int shm_segsz—size of the shared-memory segment

o short shm nattch—number of attaches to the shared-memory
segment

o struct ipc_perm shm_perm—permission structure of the shared-
memory segment

The struct ipc_perm data structure (which is available in the file
/usr/include/sys/ipc.h) contains the fields:

© unsigned short uid-—identifier of the user of the shared-memory
segment

¢ unsigned short mode—permission modes

© key_t key (onLinuxsystems, __key)—user-specified key identifier

The permission modes are set according to how the shared-memory
segment is established with the shmget () system call. Permissions are
identified according to the following:

mode meaning

0400 Read permission of owner.
0200 Write permission of owner.
0040 Read permission of group.
0020 Write permission of group.
0004 Read permission of world.
0002 Write permission of world.

Permissions can be accessed by using the bitwise AND operator &.
For example, if the statement mode & 0400 evaluates to “true,” the
permission mode gives read permission to the owner of the shared-
memory segment.

A shared-memory segment can be identified according to a user-
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmct1 O
system call:

/* identifier of the shared memory segmentx*/
int segment_id;
shm_ds shmbuffer;

shmctl(segment,id, IPC_STAT, &shmbuffer);

148 Chapter3 Frocess Concept

If successful, shmct1 () returns 0; otherwise, it returns —1 indicating an
error condition (the global variable errno can be accessed to determine
the error condition).

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmctl() function to obtain
its shm_ds structure. It will then output the following values of the
shared-memory segment:

¢ Segment ID
o Key

Mode

s Owner UID

o]

¢ Size

o Number of attaches

@:ﬁﬁrﬂ; 1R R S T T N |
AL i o N L N S 1 i3 B P
< =

3.21 POSIX Message Passing.

This project consists of using POSIX message queues for communicating
temperatures between each of four external processes and a central
process. The project can be completed on systems that support POSIX
message passing, such as UNIX, Linux, and Mac OS X.

Part 1: Overview

Four external processes will communicate temperatures to a central
process, which in turn will reply with its own temperature and will
indicate whether the entire system has stabilized. Each process will
receive its initial temperature upon creation and will recalculate a new
temperature according to two formulas:

new external temp =
(myTemp * 3 + 2 * centralTemp) / 5;

new central temp =
(2 * centralTemp + four temps received from external processes) / 6;

Initially, each external process will send its temperature to the mailbox
for the central process. If all four temperatures are exactly the same as
those sent by the four processes during the last iteration, the system
has stabilized. In this case, the central process will notify each external
process that it is now finished (along with the central process itself),
and each process will output the final stabilized temperature. If the
system has not yet become stable, the central process will send its new
temperature to the mailbox for each of the outer processes and await
their replies. The processes will continue to run until the temperature
has stabilized.

]

Part 2: The Message Passing System

Processes can exchange messages by using four system calls: msgget (),
msgsnd (), msgrev(), and msgetl (). The msgget () function converts
a mailbox name to a message queue id, msqid. (A mailbox name
is an externally known message queue name that is shared among
the cooperating processes.) msqid, the internal identifier returned by
msgget (), must be passed to all subsequent system calls using this
message queue to facilitate interprocess communication. A typical
invocation of msgget ()is seen below:

msqid = msgget (1234, 0600 | IPC_CREAT);

The first parameter is the name of the mailbox, and the second parameter
instructs the operating system to create the message queue if it does not
already exist, with read and write privileges only for processes with the
same user id as this process. If a message queue already exists for this
mailbox name, msgget () returns the msqid of the existing mailbox. To
avoid attaching to an existing message queue, a process can first attempt
to attach to the mailbox by omitting IPC_CREAT and then checking the
return value from msgget (). If msqid is negative, an error has occurred
during the system call, and the globally accessible variable errno can be
consulted to determine whether the error occurred because the message
queue already exists or for some other reason. If the process determines
that the mailbox does not currently exist, it can then create it by including
IPC_CREAT. (For the current project, this strategy should not be necessary
if students are using standalone PCs or are assigned unique ranges of
mailbox names by the instructor.)

Once a valid msqid has been established, a process can begin to
use msgsnd () to send messages and msgrcv() to receive messages.
The messages being sent and received are similar in format to those
described in Section 3.5.2, as they include a fixed-length portion at the
beginning followed by a variable-length portion. Obviously, the senders
and receivers must agree on the format of the messages being exchanged.
Since the operating system specifies one field in the fixed-length portion
of every message format, and at least one piece of information will
be sent to the receiving process, it is logical to create a data aggregate
for each type of message using a struct. The first field of any such
struct must be a long, and it will contain the priority of the message.
(This project does not use this functionality; we recommend that you
simply make the first field in every message equal to the same integral
value, such as 2.) Other fields in the messages contain the information
to be shared between the communicating processes. Three additional
tields are recommended: (1) the temperature being sent, (2) the process
number of the external process sending the message (0 for the central
process), and (3) a flag that is set to 0 but that the central process will
set to 1 when it notices stability. A recommended struct appears as
follows:

150

Chapter 3 Process Concept

struct {
long priority;
int temp;
int pid;
int stable;
} msgp;

Assuming the msqid has been established, examples of msgsnd () and
msgrcv () appear as such:

int stat, msqid;

stat = msgsnd(msqid, &msgp,

sizeof (msgp)—sizeof (long), 0);

stat = msgrcv(msqid, &msgp,
sizeof (msgp)—sizeof(long), 2, 0);

The first parameter in both system calls must be a valid msqid; otherwise
a negative value is returned. (Both functions return the number of
bytes sent or received upon successful completion of the operation.)
The second parameter is the address of where to find or store the
message to be sent or received, followed by the number of information
bytes to be sent or received. The final parameter of 0 indicates that the
operations will be synchronous and that the sender will block if the
message queue is full. (IPC_NOWAIT would be used if asynchronous, or
nonblocking, operations were desired. Each individual message queue
can hold a maximum number of messages—or bytes—so it is possible
for the queue to become filled, which is one reason a sender may block
when attempting to transmit a message.) The 2 that appears before this
final parameter in msgrcv() indicates the minimum priority level of
the messages the process wishes to receive; the receiver will wait until
a message of that priority (or higher) is sent to the msqid if this is a
synchronous operation.

Once a process is finished using a message queue, it must be
removed so that the mailbox can be reused by other processes. Unless
it is removed, the message queue—and any messages that have not yet
been received —will remain in the storage space that has been provided
for this mailbox by the kernel. To remove the message queue, and delete
any unread messages therein, it is necessary to invoke msgctl(), as
follows:

struct msgid_ds dummyParam;
status = msgctl(msqgid, IPC_RMID, &dummyParam);

The third parameter is necessary because this function requires it, but it
is used only if it the programmer wishes to collect some statistics about
the usage of the message queue. This is accomplished by substituting
IPC_STAT as the second parameter.

All programs should include the following three header files, which
are found in /usr/include/sys: ipc.h, types.h, and msg.h. One
possibly confusing artifact of the message queue implementation bears

mentioning at this point. After a mailbox is removed via msgctl (), any
subsequent attempts to create another mailbox with that same name
using msgget () will typically generate a different msqid.

Part 3: Creating the Processes

Each external process, as well as the central server, will create its own
mailbox with the name X + i, where 7 is a numeric identifier of the
external process 1..4 or zero for the central process. Thus, if X were 70,
then the central process would receive messages in the mailbox named
70, and it would send its replies to mailboxes 71-74. Outer process 2
would receive in mailbox 72 and would send to mailbox 70, and so forth.
Thus, each external process will attach to two mailboxes, and the central
process will attach to five. If each process specifies IPC_CREAT when
invoking msgget (), the first process that invokes msgget () actually
creates the mailbox; subsequent calls to msgget () attach to the existing
mailbox. The protocol for removal should be that the mailbox/message
queue that each process is listening to should be the only one it removes
—viamsgctl().)

Each external process will be uniquely identified by a command-line
parameter. The first parameter to each external process will be its initial
temperature, and the second parameter will be its unique number: 1,
2,3, or 4. The central server will be passed one parameter—its initial
temperature. Assuming the executable name of the external process is
external and the central server is central, invoking all five processes
will be done as follows:

./external 100 1 &
./external 22 2 &
./external 50 3 &
./external 40 4 &
./central 60 &

Part 4: Implementation Hints

It might be best to start by sending one message successfully from
the central process to a single outer process, and vice versa, before
trying to write all the code to solve this problem. It is also wise to
check all the return values from the four message queue system calls
for possible failed requests and to output a message to the screen after
each one successfully completes. The message should indicate what was
accomplished and by whom—for instance, “mailbox 71 has been created
by outer process 1,” “message received by central process from external
process 2,” and so forth. These messages can be removed or commented
out after the problem is solved. Processes should also verify that they
were passed the correct number of command-line parameters (via the
argc parameter in main()). Finally, extraneous messages residing in
a queue can cause a collection of cooperating processes that function
correctly to appear erroneous. For that reason, it is wise to remove all
mailboxes relevant to this project to ensure that mailboxes are empty
before the processes begin. The easiest way to do this is to use the

152

Chapter 3 FProcess Concept

ipcs command to list all message queues and the ipcrm command to
remove existing message queues. The ipcs command lists the msqid of
all message queues on the system. Use ipcrm to remove message queues
according to their msqid. For example, if msqid 163845 appears with the
output of ipcs, it can be deleted with the following command:

ipcrm —q 163845

Interprocess communication in the RC 4000 system is discussed by Brinch-
Hansen [1970]. Schlichting and Schneider [1982] discuss asynchronous
message-passing primitives. The IPC facility implemented at the user level is
described by Bershad et al. [1990].

Details of interprocess communication in UNIX systems are presented by
Gray [1997]. Barrera [1991] and Vahalia [1996] describe interprocess commu-
nication in the Mach system. Russinovich and Solomon [2005], Solomon and
Russinovich [2000], and Stevens [1999] outline interprocess communication
in Windows 2003, Windows 2000 and UNIX respectively. Hart [2005] covers
Windows systems programming in detail.

The implementation of RPCs is discussed by Birrell and Nelson [1984].
Shrivastava and Panzieri [1982] describes the design of a reliable RPC mecha-
nism, and Tay and Ananda [1990] presents a survey of RPCs. Stankovic [1982]
and Staunstrup [1982] discuss procedure calls versus message-passing com-
munication. Harold [2005] provides coverage of socket programming in Java.
Hart [2005] and Robbins and Robbins [2003] cover pipes in Windows and UNIX
systems, respectively.

4.1

CHAPTER

The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APIs for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and its effect on the design of operating systems. Finally, we
explore how the Windows XP and Linux operating systems support threads at
the kerne] level.

o To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

= To discuss the APIs for the Pthreads, Win32, and Java thread libraries.
= To examine issues related to multithreaded programming.

0% renr

0]
3
0]

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program

counter, a register set, and a stack. It shares with other threads belonging

to the same process its code section, data section, and other operating-system

resources, such as open files and signals. A traditional (or heavyweight) process

has a single thread of control. If a process has multiple threads of control, it

can perform more than one task at a time. Figure 4.1 illustrates the difference
i tithreaded process.

between a traditional single-threaded process and a =

4.1.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A Web browser might have one thread display images or

153

154

Chapter4 T

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —— < - <<—— thread
& c < <

single-threaded process multithreaded process
Figure 4.1 Single-threaded and multithreaded processes.

text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a Web server accepts client requests for
Web pages, images, sound, and so forth. A busy Web server may have several
(perhaps thousands of) clients concurrently accessing it. If the Web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time, and a client might have to wait a very long time for its request
to be serviced.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, however. If the new process will perform the same tasks as
the existing process, why incur all that overhead? It is generally more efficient
to use one process that contains multiple threads. If the Web-server process
is multithreaded, the server will create a separate thread that listens for client
requests. When a request is made, rather than creating another process, the
server will create a new thread to service the request and resume listening for
additional requests. This is illustrated in Figure 4.2.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests.

Finally, most operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such

4.1 Overview 155

(2) create new
(1) request thread to service

the request

A

thread

client > server

(3) resume listening
for additional
client requests

Figure 4.2 Multithreaded server architecture.

as managing devices or interrupt handling. For example, Solaris creates a set
of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

N3

e

Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded Web browser could allow user interaction in
one thread while an image was being loaded in another thread.

Resource sharing. Processes may only share resources through tech-
niques such as shared memory or message passing. Such techniques must
be explicitly arranged by the programmer. However, threads share the
memory and the resources of the process to which they belong by default.
The benefit of sharing code and data is that it allows an application to
have several different threads of activity within the same address space.

Economy. Allocating memory and resources for process creation is costly.
Because threads share the resources of the process to which they belong,
it is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a process is about thirty times slower than
is creating a thread, and context switching is about five times slower.

Scalability. The benefits of multithreading can be greatly increased in a
multiprocessor architecture, where threads may be running in parallel
on different processors. A single-threaded process can only run on one
processor, regardless how many are available. Multithreading on a multi-
CPU machine increases parallelism. We explore this issue further in the
following section.

156

Chapter 4

single core | Ty To | T3 Ta | Ty To | Tz | Ty T

time

Figure 4.3 Concurrent execution on a single-core system.

4.1.3 Multicore Programming

Arecent trend in system design has been to place multiple computing cores on
a single chip, where each core appears as a separate processor to the operating
system (Section 1.3.2). Multithreaded programming provides a mechanism
for more efficient use of multiple cores and improved concurrency. Consider
an application with four threads. On a system with a single computing core,
concurrency merely means that the execution of the threads will be interleaved
over time (Figure 4.3), as the processing core is capable of executing only one
thread at a time. On a system with multiple cores, however, concurrency means
that the threads can run in parallel, as the system can assign a separate thread
to each core (Figure 4.4).

The trend towards multicore systems has placed pressure on system
designers as well as application programmers to make better use of the multiple
computing cores. Designers of operating systems must write scheduling
algorithms that use multiple processing cores to allow the parallel execution
shown in Figure 4.4. For application programmers, the challenge is to modify
existing programs as well as design new programs that are multithreaded to
take advantage of multicore systems. In general, five areas present challenges
in programming for multicore systems:

Dividing activities. This involves examining applications to find areas
that can be divided into separate, concurrent tasks and thus can run in
parallel on individual cores.

E\-}

Balance. While identifying tasks that can run in parallel, programmers
must also ensure that the tasks perform equal work of equal value. In
some instances, a certain task may not contribute as much value to the
overall process as other tasks; using a separate execution core to run that
task may not be worth the cost.

(€%

Data splitting. Just as applications are divided into separate tasks, the
data accessed and manipulated by the tasks must be divided to run on
separate cores.

core 1 Ty Ts3 Ty Ty Ty

core 2 To Ta T2 T4 To

time

Figure 4.4 Parallel execution on a multicore system.

4.2

4.2

4. Data dependency. The data accessed by the tasks must be examined
for dependencies between two or more tasks. In instances where one
task depends on data from another, programmers must ensure that
the execution of the tasks is synchronized to accommodate the data
dependency. We examine such strategies in Chapter 6.

Testing and debugging. When a program is running in parallel on
multiple cores, there are many different execution paths. Testing and
debugging such concurrent programs is inherently more difficult than
testing and debugging single-threaded applications.

(@3]

Because of these challenges, many software developers argue that the advent of
multicore systems will require an entirely new approach to designing software
systems in the future.

Our discussion so far has treated threads in a generic sense. However, support
for threads may be prov1ded either at the user level, for user threads, or by the
kernel, for ke ds. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtually all contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
Tru64 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, a relationship must exist between user threads and kernel
threads. In this section, we look at three common ways of establishing such a
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.5) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user

AVAVA
NN

«—— user thread

AVAva
NN

<«—— kemel thread

Figure 4.5 Many-to-one model.

158

Chapter4 I/

Figure 4,6 One-to-one model.

space, so it is efficient; but the entire process will block if a thread makes a
blocking system call. Also, because only one thread can access the kernel at a
tlme multlple threads are unable to run in parallel on multiprocessors. Green
; —a th1 ead library available for Solaris—uses this model, as does GINU

4.2.2 One-to-One Model

The one-to-one model (Figure 4.6) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems, implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.7) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to

AN
AN

S

<<— user thread

AVave

S

«—— kernel thread

Figure 4.7 Many-to-many model.

4.3

159

e
AVaValN
[OVAVAal

; ; <~— user thread

@ «~— kemel thread

Figure 4.8 Two-level model.

create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smaller or equal number of kernel threads but also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to as the two-level model (Figure 4.8), is supported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

Thras
inrea

A thread library provides the programmer with an API for creating and
managing threads. There are two primary ways of implementing a thread
library. The first approach is to provide a library entirely in user space with no
kernel support. All code and data structures for the library exist in user space.
This means that invoking a function in the library results in a local function
call in user space and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the POSIX standard, may be
provided as either a user- or kernel-level library. The Win32 thread library
is a kernel-level library available on Windows systems. The Java thread API
allows threads to be created and managed directly in Java programs. However,
because in most instances the JvM is running on top of a host operating system,

160

Chapter4 Jviwltith

the Java thread APl is generally implemented using a thread library available
on the host system. This means that on Windows systems, Java threads are
typically implemented using the Win32 API; UNIX and Linux systems often use
Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

N
Sum = g i
i=0

For example, if N were 5, this function would represent the summation of
integers from 0 to 5, which is 15. Each of the three programs will be run with
the upper bounds of the summation entered on the command line; thus, if the
user enters 8, the summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

i

Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread
creation and synchronization. This is a specification for thread behavior, not an
implementation. Operating system designers may implement the specification in
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac OS X, and Tru64 UNIX. Shareware implementations
are available in the public domain for the various Windows operating systems
as well.

The C program shown in Figure 4.9 demonstrates the basic Pthreads AFI for
constructing a multithreaded program that calculates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.9, this is the runner ()
function. When this program begins, a single thread of control begins in
main(). After some initialization, main() creates a second thread that begins
control in the runner () function. Both threads share the global data sum.

Let’s look more closely at this program. All Pthreads programs must
include the pthread.h header file. The statement pthread_t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread_attr_t attr
declaration represents the attributes for the thread. We set the attributes in the
function call pthread_attr_init(&attr). Because we did not explicitly set
any attributes, we use the default attributes provided. (In Chapter 5, we discuss
some of the scheduling attributes provided by the Pthreads API.) A separate
thread is created with the pthread_create() function call. In addition to
passing the thread identifier and the attributes for the thread, we also pass the
name of the function where the new thread will begin execution—in this case,
the runner () function. Last, we pass the integer parameter that was provided
on the command line, argv [1].

At this point, the program has two threads: the initial (or parent) thread
in main() and the summation (or child) thread performing the summation

161

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */

int main(int argc, char *argv([])
{
pthread t tid; /* the thread identifier */
pthread attr.t attr; /* set of thread attributes */

if (arge '= 2) {
fprintf (stderr, "usage: a.out <integer value>\n'");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr, "%d must be >= O\n",atoi(argv[1]));
return -1;

}

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv(i]);
/* wait for the thread to exit */

pthread _join(tid,NULL) ;

printf ("sum = %d\n",sum) ;

}

/* The thread will begin control in this function */
void *runner(void *param)
{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)
sum += i;

pthread.exit(0);

}

Figure 4.9 Multithreaded C program using the Pthreads API.

operation in the runner() function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it calls the function
pthread_exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

162

Chapter4 I

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is similar
to the Pthreads technique in several ways. We illustrate the Win32 thread
APl in the C program shown in Figure 4.10. Notice that we must include the
windows.h header file when using the Win32 API.

Just as in the Pthreads version shown in Figure 4.9, data shared by the
separate threads—in this case, Sum—are declared globally (the DWORD data
type is an unsigned 32-bit integer). We also define the Summation() function
thatis to be performed in a separate thread. This function is passed a pointer to
a void, which Win32 defines as LPVOID. The thread performing this function
sets the global data Sum to the value of the summation from 0 to the parameter
passed to Summation().

Threads are created in the Win32 API using the CreateThread () function,
and—just as in Pthreads—a set of attributes for the thread is passed to this
function. These attributes include security information, the size of the stack,
and a flag that can be set to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it eligible
to be run by the CPU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sum, as
the value is set by the summation thread. Recall that the Pthread program
(Figure 4.9) had the parent thread wait for the summation thread using the
pthread_join() statement. We perform the equivalent of this in the Win32 API
using the WaitForSingleObject () function, which causes the creating thread
to block until the summation thread has exited. (We cover synchronization
objects in more detail in Chapter 6.)

4.3.3 Java Threads

Threads are the fundamental model of program execution in a Java program,
and the Java language and its API provide a rich set of features for the creation
and management of threads. All Java programs comprise at least a single thread
of control—even a simple Java program consisting of only a main () method
runs as a single thread in the JVM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run() method. An alternative—and more commonly used—
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{
}

When a class implements Runnable, it must define a run () method. The code
implementing the run () method is what runs as a separate thread.

Figure 4.11 shows the Java version of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating

public abstract void run();

#include <windows.h>

#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) =/
/* the thread runs in this separate function */

DWORD WINAPT Summation(LPVOID Param)
{
DWORD Upper = *(DWORD#*)Param;
for (DWORD 1 = 0; 1 <= Upper; i++)
Sum += i;
return O;

}

int main(int argc, char *argv([])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (arge '= 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;
}
Param = atoi(argv[1]);
if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

}

// create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
// now wait for the thread to finish
WaitForSingleObject (ThreadHandle, INFINITE) ;

// close the thread handle
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum);

Figure 4.10 Multithreaded C program using the Win32 API.

163

164 Chapter4 Twit

class Sum

{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumvValue = sumValue;

}

public void run() {
int sum = 0;
for (int 1 = 0; 1 <= upper; i++)
sum += 1;
sumValue.setSum(sum) ;
}
}

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt (args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");
elgse {
// create the object to be shared
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (argsl0]);
Thread thrd = new Thread(new Summation (upper, sumObject));
thrd.start () ;
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

¥
}

else
System.err.println("Usage: Summation <integer value>"); }

Figure 4.11 Java program for the summation of a non-negative integer.

4.4

44 Threading Issues 165

an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not specifically create the new thread; rather,
it is the start () method that creates the new thread. Calling the start ()
method for the new object does two things:

1. Itallocates memory and initializes a new thread in the JVM.

b2

It calls the run() method, making the thread eligible to be run by the
JVM. (Note that we never call the run() method directly. Rather, we call
the start () method, and it calls the run () method on our behalf.)

When the summation program runs, two threads are created by the JVM.
The first is the parent thread, which starts execution in the main() method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, since
shared data are simply declared globally. As a pure object-oriented language,
Java has no such notion of global data; if two or more threads are to share
data in a Java program, the sharing occurs by passing references to the shared
object to the appropriate threads. In the Java program shown in Figure 4.11,
the main thread and the summation thread share the object instance of the Sum
class. This shared object is referenced through the appropriate getSum () and
setSum() methods. (You might wonder why we don’t use an Integer object
rather than designing a new sum class. The reason is that the Integer class is
immutable—that is, once its value is set, it cannot change.)

Recall that the parent threads in the Pthreads and Win32 libraries use
pthread_join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides similar functionality. (Notice that join() can throw an
InterruptedException, which we choose to ignore.)

In this section, we discuss some of the issues to consider with multithreaded
programs.

4.4.1 The fork() and exec() System Calls

In Chapter 3, we described how the fork() system call is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
calls change in a multithreaded program.

If one thread in a program calls fork(), does the new process duplicate
all threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork(), one that duplicates all threads and
another that duplicates only the thread that invoked the fork () system call.

The exec() system call typically works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system call, the program

166

Chapter 4

The JVM and the Host Operating System

The JVM is typically implemented on top of a host operating system (see
Figure 2.20). This setup allows the JVM to hide the implementation details
of the underlying operating system and to provide a consistent, abstract
environment that allows Java programs to operate on any platform that
supports a JVM. The specification for the JVM does not indicate how Java
threads are to be mapped to the underlying operating system, instead leaving
that decision to the particular implementation of the JVM. For example, the
Windows XP operating system uses the one-to-one model; therefore, each
Java thread for a JVM running on such a system maps to a kernel thread. On
operating systems that use the many-to-many model (such as Tru64 UNIX), a
Java thread is mapped according to the many-to-many model. Solaris initially
implemented the JVM using the many-to-one model (the green threads library,
mentioned earlier). Later releases of the JVM were implemented using the
many-to-many model. Beginning with Solaris 9, Java threads were mapped
using the one-to-one model. In addition, there may be a relationship between
the Java thread library and the thread library on the host operating system.
For example, implementations of a JVM for the Windows family of operating
systems might use the Win32 API when creating Java threads; Linux, Solaris,
and Mac OS X systems might use the Pthreads APL

specified in the parameter to exec () will replace the entire process—including
all threads.

Which of the two versions of fork() to use depends on the application.
If exec() is called immediately after forking, then duplicating all threads is
unnecessary, as the program specified in the parameters to exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process does not call exec () after forking, the separate
process should duplicate all threads.

4.4.2 Cancellation

Thread cancellation is the task of terminating a thread before it has completed.
For example, if multiple threads are concunen’dy searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on a Web browser
that stops a Web page from loading any further. Often, a Web page is loaded
using several threads—each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.

A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

4.4 Threading Issues 167

Z. Deferred cancellation. The target thread periodically checks whether it

should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been allocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim all resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource.

With deferred cancellation, in contrast, one thread indicates that a target
thread is to be canceled, but cancellation occurs only after the target thread has
checked a flag to determine whether or not it should be canceled. The thread
can perform this check at a point at which it can be canceled safely. Pthreads
refers to such points as carcellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

1. Asignal is generated by the occurrence of a particular event.

2. A generated signal is delivered to a process.

Q2

Once delivered, the signal must be handled.

Examples of synchronous signals include illegal memory access and
division by 0. If a running program performs either of these actions, a signal
is generated. Synchronous signals are delivered to the same process that
performed the operation that caused the signal (that is the reason they are
considered synchronous).

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals include
terminating a process with specific keystrokes (such as <control><C>) and
having a timer expire. Typically, an asynchronous signal is sent to another
process.

A signal may be handled by one of two possible handlers:

=4

1. A default signal handler

2

A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals are handled in
different ways. Some signals (such as changing the size of a window) are
simply ignored; others (such as an illegal memory access) are handled by

terminating the program.

168

Chapter4 &

Handling signals in single-threaded programs is straightforward: signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

L. Deliver the signal to the thread to which the signal applies.

N3

Deliver the signal to every thread in the process.

2

Deliver the signal to certain threads in the process.

s

Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX allow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an
asynchronous signal may be delivered only to those threads that are not
blocking it. However, because signals need to be handled only once, a signal
is typically delivered only to the first thread found that is not blocking it.
The standard UNIX function for delivering a signal is ki11(pid.t pid, int
signal), which specifies the process (pid) to which a particular signal is to be
delivered. POSIX Pthreads provides the pthread kill (pthread_t tid, int
signal) function, which allows a signal to be delivered to a specified thread
(tid).

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchrenous procedure calls {£7Cs). The APC tacility
allows a user thread to spec1fy a function that is to be called when the user
thread receives notification of a particular event. As indicated by its name,
an APC is roughly equivalent to an asynchronous signal in UNIX. However,
whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the APC facility ismore straightforward, since an APC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a Web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first issue concerns the amount of time required to create the thread prior
to servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: if we
allow all concurrent requests to be serviced in a new thread, we have not placed
a bound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to this problem is to use a 'z ;

44 169

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a request, it awakens a thread from this pool—if one
is available—and passes it the request for service. Once the thread completes
its service, it returns to the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

Servicing a request with an existing thread is usually faster than waiting
to create a thread.

B3

A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the system is low.

The Win32 API provides several functions related to thread pools. Using
the thread pool API is similar to creating a thread with the Thread Create ()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DWORD WINAPI PoolFunction (AVOID Param)
/**
* this function runs as a separate thread.
**/

A pointer to PoolFunction() is passed to one of the functions in the thread
pool API, and a thread from the pool executes this function. One such member
in the thread pool APIis the QueueUserWorkItem() function, which is passed
three parameters:

© LPTHREAD_START_RUUTINE Function—a pointer to the function that is to
run as a separate thread

PVOID Param—the parameter passed to Function

ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

An example of invoking a function is:
QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke PoolFunction()
on behalf of the programmer. In this instance, we pass no parameters to

170

Chapter 4

<«—— user thread

<
/

Figure 4.12 Lightweight process (LWP).

PoolFunction(). Because we specify O as a flag, we provide the thread pool
with no special instructions for thread creation.

Other members in the Win32 thread pool API include utilities that invoke
functions at periodic intervals or when an asynchronous /0 request completes.
The java.util.concurrent package inJava 1.5 provides a thread pool utility
as well.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction might be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries—including Win32 and Pthreads—provide some

form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A final issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or the two-level
model place an intermediate data structure between the user and kernel
threads. This data structure—typically known as a lightweight process, or
LWP—is shown in Figure 4.12. To the user-thread library, the LWP appears to
be a wirtual processor on which the application can schedule a user thread to
run. Each LWP is attached to a kernel thread, and it is kernel threads that the
operating system schedules to run on physical processors. If a kernel thread
blocks (such as while waiting for an I/O operation to complete), the LWP blocks
as well. Up the chain, the user-level thread attached to the LWP also blocks.

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only

4.5

171

one thread can run at once, so one LWP is sufficient. An application that is 1/0O-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for I/O completion in the kernel. If a process has
only four LWPs, then the fifth request must wait for one of the LWPs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of V1rtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcail. Upcalls are handled by the thread library
with an upcail handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then allocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler for this eventalso requires a virtual processor, and the kernel
may allocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

In this section, we explore how threads are implemented in Windows XP and
Linux systems.

4.51 Windows XP Threads

Windows XP implements the Win32 API, which is the primary API for the
family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 API for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP also provides support for a fiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

172

Chapter 4

The general components of a thread include:

A thread ID uniquely identifying the thread
A register set representing the status of the processor

A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

A private storage area used by various run-time libraries and dynamic link
libraries (DLLs)

The register set, stacks, and private storage area are known as the con

i

of the thread. The primary data structures of a thread include:

&)

&)

@]

ETHREAD—executive thread block
KTHREAD—kernel thread block

TEB—thread environment block

The key components of the ETHREAD include a pointer to the process

to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

ETHREAD
thread start
address
pointer to
parent process KTHREAD
o scheduling
g and
synchronization
. information
’ kernel TEB
stack
> thread identifier
. user
. stack
thread-local
storage
kernel space user space

Figure 4.13 Data structures of a Windows XP thread.

4.5 ooevalivoeIyniern Wian s 173

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can access them. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-
specific data (which Windows XP terms vz 2 cce” siorazz). The structure of
a Windows XP thread is illustrated in Figure 4.13.

4.5.2 Linux Threads

Linux provides the fork() system call with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task—rather than process or thread—when referring to a flow of control
within a program.

When clone () isinvoked, it is passed a set of flags, which determine how
much sharing is to take place between the parent and child tasks. Some of these
flags are listed below:

flag meaning
CLONE_FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

For example, if clone() 1is passed the flags CLONE.FS, CLONE_VM,
CLONE_SIGHAND, and CLONE.FILES, the parent and child tasks will share
the same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone () in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags is set when clone () is invoked, no
sharing takes place, resulting in functionality similar to that provided by the
fork() system call.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specifically,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored —for example, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork (0
is invoked, a new task is created, along with a copy of all the associated data
structures of the parent process. A new task is also created when the clone ()
system call is made. However, rather than copying all data structures, the new

174

4.6

Chapter4 vt

task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

Several distributions of the Linux kernel now include the NPTL thread
library. NPTL (which stands for Native POSIX Thread Library) provides a
POSIX-compliant thread model for Linux systems along with several other
features, such as better support for SMP systems, as well as taking advantage
of NUMA support. In addition, the start-up cost for creating a thread is
lower with NPTL than with traditional Linux threads. Finally, with NPTL, the
system has the potential to support hundreds of thousands of threads. Such
support becomes more important with the growth of multicore and other SMP
systems.

-
L)

A thread is a flow of control within a process. A multithreaded process contains
several different flows of control within the same address space. The benefits of
multithreading include increased responsiveness to the user, resource sharing
within the process, economy, and scalability issues such as more efficient use
of multiple cores.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kernel threads, as no intervention from the kernel is required.
Three different types of models relate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal number of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an API for
creating and managing threads. Three primary thread libraries are in com-
mon use: POSIX Pthreads, Win32 threads for Windows systems, and Java
threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork () and exec () system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

41 Provide two programming examples in which multithreading does rnot
! prog 8 : ' g
provide better performance than a single-threaded solution.

4.2 Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The

]

rcises 175

5]
'
g

e

program will then create a separate thread that outputs all the prime
numbers less than or equal to the number entered by the user.

4.3 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values
b. Heap memory
c. Global variables

d. Stack memory

4.4 The program shown in Figure 4.14 uses the Pthreads API. What would
be the output from the program at LINE ¢ and LINE p?

#include <pthread.h>
#include <stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])
{

int pid;

pthread_t tid;

pthread_attr_t attr;

pid = fork();

if (pid == 0) { /* child process */
pthread attr_init (&attr);
pthread create (&tid,&attr,runner,NULL) ;
pthread join(tid,NULL);
printf ("CHILD: value = %d",value); /x LINE C */
}
else if (pid > 0) { /* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE P %/
}
}

void srunner (void *param) {
value = 5;
pthread_exit (0);

}

Figure 4.14 C program for Exercise 4.4.

176

Chapter4 I/uiitireacdec Programmls

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal to
the number of processors.

¢. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of user-
level threads.

What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

Exercise 3.16 in Chapter 3 involves designing an echo server using the
Java threading API. However, this server is single-threaded, meaning
that the server cannotrespond to concurrent echo clients until the current
client exits. Modify the solution to Exercise 3.16 so that the echo server
services each client in a separate request.

Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.

Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system? Explain.

What resources are used when a thread is created? How do they differ
from those used when a process is created?

Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8,....
Formally, it can be expressed as:

fiby =0
Fiby =1
fiby = fiby 1+ fib, 2

Write a multithreaded program that generates the Fibonacci sequence
using either the Java, Pthreads, or Win32 thread library. This program

0y

177

©
€

)
&)

should work as follows: The user will enter on the command line
the number of Fibonacci numbers that the program is to generate.
The program will then create a separate thread that will generate the
Fibonacci numbers, placing the sequence in data that can be shared by
the threads (an array is probably the most convenient data structure).
When the thread finishes execution, the parent thread will output the
sequence generated by the child thread. Because the parent thread cannot
begin outputting the Fibonacci sequence until the child thread finishes,
this will require having the parent thread wait for the child thread to
finish, using the techniques described in Section 4.3.

413 APthread program that performs the summation function was provided
in Section 4.3.1. Rewrite this program in Java.

414 As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone() system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

4.15 Describe the actions taken by a thread library to context-switch between
user-level threads.

The set of projects below deal with two distinct topics—naming service and
matrix muliplication.

Project 1: Naming Service Project

A naming service such as DNS (for domain name system) can be used to
resolve IP names to IP addresses. For example, when someone accesses the host
www . westminstercollege.edu, anaming service is used to determine the
IP address that is mapped to the IP name www.westminstercollege.edu.
This assignment consists of writing a multithreaded naming service in Java
using sockets (see Section 3.6.1).

The java.net API provides the following mechanism for resolving IP names:

InetAddress hostAddress =
InetAddresg.getByName ("www.westminstercollege.edu") ;
String IPaddress = hostAddress.getHostAddress () ;

where getRByName {) throws an UnknownHostException if it is unable to
resolve the host name.

178

Chapter4 M

The Server

The server will listen to port 6052 waiting for client connections. When
a client connection is made, the server will service the connectionin a separate
thread and will resume listening for additional client connections. Once a
client makes a connection to the server, the client will write the IP name it
wishes the server to resolve—such as www.westminstercollege.edu—
to the socket. The server thread will read this IP name from the socket and
either resolve its IP address or, if it cannot locate the host address, catch an
UnknownHostException. The server will write the IP address back to the
client or, in the case of an UnknownHostException, will write the message
“Unable to resolve host <host names.” Once the server has written
to the client, it will close its socket connection.

The Client

Initially, write just the server application and connect to it via telnet.
For example, assuming the server is running on the localhost, a telnet session
would appear as follows. (Client responses appear in blue.)

telnet localhost 6052

Connected to localhost.

Ecscape character is ’"]7.

www . westminstercollege.edu
146.86.1.17

Connection closed by foreign host.

Byinitially having telnetactas a client, you can more easily debug any problems
you may have with your server. Once you are convinced your server is working
properly, you can write a client application. The client will be passed the IP
name that is to be resolved as a parameter. The client will open a socket
connection to the server and then write the IP name that is to be resolved. It
will then read the response sent back by the server. As an example, if the client
is named NSClient, it is invoked as follows:

java NSClient www.westminstercollege.edu

and the server will respond with the corresponding IP address or “unknown
host” message. Once the client has output the IP address, it will close its socket
connection.

Project 2: Matrix Multiplication Project

Given two matrices, Aand B, where matrix A contains M rows and K columns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i, column j (C; ;) is the sum of the products of the elements for row i
inmatrix Aand column j in matrix B. That is,

s]
[

K
C/j = Z Ai‘n X Bn,/

=1

For example, if Ais a 3-by-2 matrix and B is a 2-by-3 matrix, element Cs; is
the sum of Agﬁl X B'l.] and Ag_z X B2_1.

For this project, calculate each element C; ; in a separate worker thread. This
will involve creating M x N worker threads. The main—or parent—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has access to 4, B, and C.

Matrices Aand B can be initialized statically, as shown below:

#tdefine M 3
#tdefine K 2
#define N 3

int A [M] [K]
int B [X] [N]
int C M] [N];

{ {1.4}, {2,5}, {3,6} };
{ {8,7.6}, {5,4.3} };

Il

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row 7 and column j thatit is to use in calculating the matrix product.
This requires passing two parameters to each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:

/* structure for passing data to threads */
struct v

int i; /* row */

int j; /* column */

s

Both the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* We have to create M * N worker threads */
for (1 = 0; 1 < M, i++)
for (j = 0; j < N; j++) {
struct v *data = (struct v *) malloc(sizeof (struct v));
data—->1i = i;
data->j = j;
/* Now create the thread passing it data as a parameter */
1
}

180

Chapter4 oiiiiiisedsc Programoning

public class WorkerThread implements Runnable
{

private int row;

private int col;

private int[J[] A;

private int[][] B;

private int[]1[] C;

public WorkerThread(int row, int col, int[][] A,
int[J 00 B, int(J[] © {

this.row = row;
this.col = col;
this.A = A;
this.B = B;
this.C = C;

3

}

public void run() {
/* calculate the matrix product in Clrow] [coll */

}
}

Figure 4.15 Worker thread in Java.

The data pointer will be passed to either the pthread_create() (Pthreads)
function or the CreateThread () (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to create
and initialize the matrices A, B, and C. This main thread will then create the
worker threads, passing the three matrices—along with row 7 and column j —
to the constructor for each worker. Thus, the outline of a worker thread appears
in Figure 4.15.

Waiting for Threads to Complete

Once all worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Several different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject() function, whereas Pthreads
and Java use pthread_join() and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 API also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

Sinlicgrzobical pocheg 181
##define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers [NUM THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[il, NULL);

Figure 4.16 Pthread code for joining ten threads.

The number of objects to wait for
A pointer to the array of objects
2. Aflag indicating if all objects have been signaled

<. A timeout duration {(or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for all its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE, INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Java's join() is to enclose the join operation within a
simple for loop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.16. The equivalent code using Java threads is shown
in Figure 4.17.

final static int NUM_THREADS = 10;

/* an array of threads to be joined upon */
Thread[] workers = new Thread[NUM_THREADS];

for (int 1 = 0; i < NUM_THREADS; i++) {

try {
workers[il.join();

} catch (InterruptedException ie) { }

Figure 4.17 Java code for joining ten threads.

Threads have had a long evolution, starting as “cheap concurrency” in
programming languages and moving to “lightweight processes”, with early
examples that included the Thoth system (Cheriton et al. [1979]) and the Pilot
system (Redell et al. [1980]). Binding [1985] described moving threads into
the UNIX kernel. Mach (Accetta et al. [1986], Tevanian et al. [1987a]) and V
(Cheriton [1988]) made extensive use of threads, and eventually almost all
major operating systems implemented them in some form or another.

182

Chapter 4 IMultithreaded Programming

Thread performance issues were discussed by Anderson et al. [1989], who
continued their work in Anderson et al. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe
combining threads with RPC. Engelschall [2000] discusses a technique for
supporting user-level threads. An analysis of an optimal thread-pool size can
be found in Ling et al. [2000]. Scheduler activations were first presented in
Anderson et al. [1991], and Williams [2002] discusses scheduler activations in
the NetBSD system. Other mechanisms by which the user-level thread library
and the kernel cooperate with each other are discussed in Marsh et al. [1991],
Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta
and Young [1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on
Linux, Windows, and Solaris.

Vahalia [1996] covers threading in several versions of UNIX. McDougall
and Mauro [2007] describe recent developments in threading the Solaris kernel.
Russinovich and Solomon [2005] discuss threading in the Windows operating
system family. Bovet and Cesati [2006] and Love [2004] explain how Linux
handles threading and Singh [2007] covers threads in Mac OS X.

Information on Pthreads programming is given in Lewis and Berg [1998]
and Butenhof [1997]. Oaks and Wong [1999], Lewis and Berg [2000], and Holub
[2000] discuss multithreading in Java. Goetz et al. [2006] present a detailed
discussion of concurrent programming in Java. Beveridge and Wiener [1997]
and Cohen and Woodring [1997] describe multithreading using Win32.

5.1

CHAPTER

CPU scheduling is the basis of multiprogrammed operating systems. By
switching the CPU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

)
<
)

¢ To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.
= To describe various CPU-scheduling algorithms,

¢ To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

In a single-processor system, only one process can run at a time; any others
must wait until the CPU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at all times, to maximize
CPU utilization. The idea is relatively simple. A process is executed until
it must wait, typically for the completion of some 1/O request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at one time. When
one process has to wait, the operating system takes the CPU away from that

183

184

Chapter 5 yoczss Scoeculin

load store
add store CPU burst
read from file

wait for I/O I/0O burst

store increment

index CPU burst
write to file

wait for I/O I/O burst
load store
add store CPU burst

read from file

wait for I/O 1/O burst

Figure 5.1 Alternating sequence of CPU and /O bursts.

process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
process execution consists of a cycle of CPU execution and I/O wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/O burst, which is followed by another CPU burst, then
another I/O burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.
An I/O-bound program typically has many short CPU bursts. A CPU-bound

160 |
140 F

120

100

80

frequency

60 |-
40 |-

oo L

I I i SN |

0 8 16 24 32 40
burst duration (milliseconds)

Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)

2. When a process switches from the running state to the ready state (for
example, when an interrupt occurs)

186

Chapter 5

When a process switches from the waiting state to the ready state (for
example, at completion of 1/0)

[@5]

W

When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exists in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was used by Microsoft Windows 3.x; Windows 95 introduced preemptive
scheduling, and all subsequent versions of Windows operating systems have
used preemptive scheduling. The Mac OS X operating system for the Macintosh
also uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behalf of a process. Such activities may involve changing important kernel
data (for instance, I/O queues). What happens if the process is preempted
in the middle of these changes and the kernel (or the device driver) needs
to read or modify the same structure? Chaos ensues. Certain operating sys-
tems, including most versions of UNIX, deal with this problem by waiting
either for a system call to complete or for an I/0 block to take place before
doing a context switch. This scheme ensures that the kernel structure is
simple, since the kernel will not preempt a process while the kernel data
structures are in an inconsistent state. Unfortunately, this kernel-execution
model is a poor one for supporting real-time computing and multipro-
cessing. These problems, and their solutions, are described in Sections 5.5
and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost all times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
at exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.

5.2

riteria 187

5.1.4 Dispatcher

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcheris the modulethat gives control of the CPU to the process selected
by the short-term scheduler. This function involves the following:

(¢}

Switching context

@]

Switching to user mode

©

Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Different CPU-scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

© CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CPU utilization can range from 0 to 100 percent. In a real system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

© Throughput. If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be ten processes per second.

¢ Turnaround time. From the point of view of a particular process, the
Important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

(&)

Waiting time. The CPU-scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

0

Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being

188

5.3

Chapter5 oocwsc Conetidl

output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

[tis desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we illustrate their operation. An accurate illustration should involve many
processes, each a sequence of several hundred CPU bursts and 1/O bursts.
For simplicity, though, we consider only one CPU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

CPU scheduling deals with the problem of deciding which of the processes in the
ready queue is to be allocated the CPU. There are many different CPU-scheduling
algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is
often quite long. Consider the following set of processes that arrive at time 0,
with the length of the CPU burst given in milliseconds:

Process Burst Time
P, 24
P, 3
P 3

5.3 Sonmznuiing Algoriinmig 189

If the processes arrive in the order P;, P», P5, and are served in FCFS order,
we get the result shown in the following Gantt chart, which is a bar chart that
illustrates a particular schedule, including the start and finish times of each of
the participating processes:

Py Py | Pg

0 24 27 30

The waiting time is 0 milliseconds for process Py, 24 milliseconds for process
P>, and 27 milliseconds for process Ps. Thus, the average waiting time is (0
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P,, Ps, Py,
however, the results will be as shown in the following Gantt chart:

Py | Pg P,

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FCFS policy is generally
not minimal and may vary substantially if the processes CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many I/O-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, all the other processes will finish their I/0 and will move into the ready
queue, waiting for the CPU. While the processes wait in the ready queue, the
/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst
and moves to an I/0 device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the I/O queues. At this point,
the CPU sits idle. The CPU-bound process will then move back to the ready
queue and be allocated the CPU. Again, all the I/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as all the other processes wait for the one big process to get off the CPU. This
effect results in lower CPU and device utilization than might be possible if the
shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the
CPU has been allocated to a process, that process keeps the CPU until it releases
the CPU, either by terminating or by requesting I/0O. The FCFS algorithm is thus
particularly troublesome for time-sharing systems, where it is important that
each user get a share of the CPU at regular intervals. It would be disastrous to
allow one process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJ¥) schedul-
ing algorithm. This algorithm associates with each process the length of the
process’s next CPU burst. When the CPU is available, it is assigned to the process

190

Chapter 5 Proc:

that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P 6
P 8
P 7
P, 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P4 P, P; P,

0 3 9 16 24

The waiting time is 3 milliseconds for process P;, 16 milliseconds for process
P;, 9 milliseconds for process Ps, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. With short-term scheduling, there is no way to
know the length of the next CPU burst. One approach is to try to approximate
SJF scheduling. We may not know the length of the next CPU burst, but we may
be able to predict its value. We expect that the next CPU burst will be similar
in length to the previous ones. By computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted CPU
burst.

191

The next CPU burst is generally predicted as an exponential average of
the measured lengths of previous CPU bursts. We can define the exponential
average with the following formula. Let ¢, be the length of the nth CPU burst,
and let 7,41 be our predicted value for the next CPU burst. Then, for o, 0 < o <
1, define

Tpal = &by + (1 - OL)TH-

The value of t; contains our most recent information; 7, stores the past history.
The parameter o controls the relative weight of recent and past history in
our prediction. If o = 0, then 7,41 = 7,;, and recent history has no effect (current
conditions are assumed to be transient). If « =1, then 7,11 =, and only the most
recent CPU burst matters (history is assumed to be old and irrelevant). More
commonly, o« = 1/2, so recent history and past history are equally weighted.
The initial 7y can be defined as a constant or as an overall system average.
Figure 5.3 shows an exponential average with o = 1/2 and 7y = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,41 by substituting for 7, to find

Tyt = oy + (1 — ooty + -+ (1 — O‘)j()“fn—j +o+ (1= OL)H_HTO-

Since both o and (1 — «) are less than or equal to 1, each successive term has
less weight than its predecessor.

The SJF algorithm can be either preemptive or nonpreemptive. The choice
arises when anew process arrives at the ready queue while a previous process is
still executing. The next CPU burst of the newly arrived process may be shorter

2 -
L | L i 1 [{ [
time ———
CPU burst (1) 6 4 6 4 13 13 13
"guess” (1) 10 8 6 6 5 9 11 12

Figure 5.3 Prediction of the length of the next CPU burst.

192

Chapter 5 rrocese Saneanling

than what is left of the currently executing process. A preemptive SJF algorithm
will preempt the currently executing process, whereas a nonpreemptive SJF
algorithm will allow the currently running process to finish its CPU burst.
Preemptive SJF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

Py 0 8
Py 1 4
Ps 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

0 1 5 10 17 26

Process Py is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds) is
larger than the time required by process P> (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
exampleis [(10 = 1) + (1 — 1) + (17 = 2) + (5 — 3)]/4 = 26 /4 = 6.5 milliseconds.
Nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.83 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm.
Apriority isassociated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time O in the order Py, P, - -+, P5, with the length of the CPU burst
given in milliseconds:

5.3 Schedulin Seic 193

(50
-

(419]
@]
¢

Process Burst Time Priority

P 10 3
P 1 1
P 2 4
Py 1 5
Ps 5 2

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

P, P

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average 1/O burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 AM. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Aging is a technique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to 0 (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventually, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

194

Chapter 5

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
enable the system to switch between processes. A small unit of time, called a
time quantum or time slice, is defined. A time quantum is generally from 10
to 100 milliseconds in length. The ready queue is treated as a circular queue.
The CPU scheduler goes around the ready queue, allocating the CPU to each
process for a time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CPU burst
given in milliseconds:

Process Burst Time

P 24
P, 3
Py 3

If we use a time quantum of 4 milliseconds, then process P; gets the first 4
milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P,. Process P, does not need 4 milliseconds, so it quits before its time
quantum expires. The CPU is then given to the next process, process P;. Once
each process has received 1 time quantum, the CPU is returned to process P;
for an additional time quantum. The resulting RR schedule is as follows:

Let’s calculate the average waiting time for the above schedule. P; waits for 6
millisconds (10 - 4), P, waits for 4 millisconds, and P; waits for 7 millisconds.
Thus, the average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row (unless it is the only runnable process). If a

ing Algorithms 195

process’s CPU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is g,
then each process gets 1/n of the CPU time in chunks of at most g time units.
Each process must wait no longer than (n — 1) x g time units until its
next time quantum. For example, with five processes and a time quantum of 20
milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the
RR policy is the same as the FCFS policy. In contrast, if the time quantum
is extremely small (say, 1 millisecond), the RR approach is called processor
sharing and (in theory) creates the appearance that each of 1 processes has its
own processor running at 1/7 the speed of the real processor. This approach
was used in Control Data Corporation (CDC) hardware to implement ten
peripheral processors with only one set of hardware and ten sets of registers.
The hardware executes one instruction for one set of registers, then goes on to
the next. This cycle continues, resulting in ten slow processors rather than one
fast one. (Actually, since the processor was much faster than memory and each
instruction referenced memory, the processors were not much slower than ten
real processors would have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Assume, for example, that we have only one
process of 10 time units. If the quantum is 12 time units, the process finishes
in less than 1 time quantum, with no overhead. If the quantum is 6 time units,
however, the process requires 2 quanta, resulting in a context switch. If the
time quantum is 1 time unit, then nine context switches will occur, slowing the
execution of the process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Figure 5.4 How a smaller time quantum increases context switches.

196

Chapter 5 ~roczos Sooatiiing

process| time
12.5 P 6
f 1
12.0 |- Fh Py 3
g Py 1
£ 115F ! : P, 7
E
S 11.0}
o
g 105}
=]
2 100}
o
S 95t
9.0 F
1 | i I] 1

1 2 3 4 5 6 7
time quantum

Figure 5.5 How turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 5.5, the average turnaround time of a set of processes
does not necessarily improve as the time-quantum size increases. In general,
the average turnaround time can be improved if most processes finish their
next CPU burst in a single time quantum. For example, given three processes
of 10 time units each and a quantum of 1 time unit, the average turnaround
time is 29. If the time quantum is 10, however, the average turnaround time
drops to 20. If context-switch time is added in, the average turnaround time
increases even more for a smaller time quantum, since more context switches
are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degenerates to an FCFS policy. A rule of thumb is that 80 percent of
the CPU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory

5.3 Sonecuiinie Alvoriiung 197

(8]

highest priority

 E— system processes —
M—— interactive processes ——
E— interactive editing processes >
—— batch processes ————
——— student processes >

lowest priority
Figure 5.6 Multilevel queue scheduling.

size, process priority, or process type. Fach queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let’s look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

System processes

. Interactive processes

Z. Interactive editing processes
Batch processes

Z. Student processes

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

198

Chapter 5

5.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/0-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCES
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

—_—————
EEEEE——— quantum = 8
) —~—
> quantum = 16
_
FCFS

Figure 5.7 Multilevel feedback queues.

5.4

5.4 Thyead Scheduling 199

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

)

The number of queues

o

The scheduling algorithm for each queue

© The method used to determine when to upgrade a process to a higher-
priority queue

© The method used to determine when to demote a process to a lower-
priority queue

© The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.4.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads belonging
to the same process. When we say the thread library schedules user threads onto
available LWPs, we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the CPU with SCS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (Section 4.2.2), such as Windows XP, Solaris, and Linux,
schedule threads using only SCS.

Typically, PCS is done according to priority—the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities

200

5.5

Chapter 5 irocess Schediiing

sl

are set by the programmer and are not adjusted by the thread library, although
some thread libraries may allow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.4.2 Pthread Scheduling

We provided a sample POSIX Pthread program in Section 4.3.1, along with an
introduction to thread creation with Pthreads. Now, we highlight the POSIX
Pthread API that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

~ PTHREAD_SCOPE.PROCESS schedules threads using PCS scheduling.
¢ PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling.

On systems implementing the many-to-many model, the
PTHREAD.SCOPE_PROCESS policy schedules user-level threads onto available
LWPs. The number of LWPs is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy.

The Pthread IPC provides two functions for getting—and setting—the
contention scope policy:

pthread attr setscope(pthread_attr_t *attr, int scope)

pthread._attr_getscope(pthread_attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread_attr_setscope() function
is passed either the PTHREAD_SCOPE_SYSTEM or the PTHREAD_SCOPE PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread_attr_getscope (), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns a non-zero value.

In Figure 5.8, we illustrate a Pthread scheduling APL The pro-
gram first determines the existing contention scope and sets it to
PTHREAD_SCOPE PROCESS. It then creates five separate threads that will
run using the SCS scheduling policy. Note that on some systems, only certain
contention scope values are allowed. For example, Linux and Mac OS X
systems allow only PTHREAD_SCOPE_SYSTEM.

Our discussion thus far has focused on the problems of scheduling the CPU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly

55 Muiizle-Frocessor Soneculing 201

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS &

int main(int argc, char *argv[])

{

int 1, scope;
pthread_t tid[NUM_THREADS] ;
pthread_attr_t attr;

/* get the default attributes */
pthread_attr_init (&attr);

/* first inquire on the current scope */

if (pthread attr _getscope(&attr, &scope) != 0)
fprintf(stderr, "Unable to get scheduling scope\n");
else {

if (scope == PTHREAD SCOPE_PROCESS)
printf ("PTHREAD _SCOPE_PROCESS") ;

else if (scope == PTHREAD_SCOPE_SYSTEM)
printf ("PTHREAD SCOPE_SYSTEM") ;

else
fprintf (stderr, "Illegal scope value.\n");

}

/* set the scheduling algorithm to PCS or SCS x/
pthread attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) ;

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
pthread create(&tid[i] ,&attr,runner,NULL) ;

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
pthread join(tid[i], NULL);

}

/* Fach thread will begin control in this function */
void *runner(void *param)

{

/* do some work ... *x/

pthread exit (0);

}

Figure 5.8 Pthread scheduling APL

more complex. Many possibilities have been tried; and as we saw with single-
processor CPU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems

202

Chapter 5 Process Scheduling

in which the processors are identical-—homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an 1/0
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.5.1 Approaches to Multiple-Processor Scheduling

One approach to CPU scheduling in a multiprocessor system has all scheduling
decisions, I/O processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SMP), where each
processor is self-scheduling. All processes may be ina common ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully. We must ensure that
two processors do not choose the same process and that processes are not lost
from the queue. Virtually all modern operating systems support SMP, including
Windows XP, Windows 2000, Solaris, Linux, and Mac OS X. In the remainder of
this section, we discuss issues concerning SMP systems.

5.5.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
a specific processor. The data most recently accessed by the process populate
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor. The contents of cache memory
must be invalidated for the first processor, and the cache for the second
processor must be repopulated. Because of the high cost of invalidating and
repopulating caches, most SMP systems try to avoid migration of processes
from one processor to another and instead attempt to keep a process running
on the same processor. This is known as processor affinity-—that is, a process
has an affinity for the processor on which it is currently running,.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor—but
not guaranteeing that it will do so—we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify thatitis not to migrate to other processors. Solaris
allows processes to be assigned to processor sets, limiting which processes can
run on which CPUs. It also implements soft affinity.

The main-memory architecture of a system can affect processor affinity
issues. Figure 5.9 illustrates an architecture featuring non-uniform memory
access (NUMA), in which a CPU has faster access to some parts of main memory
than to other parts. Typically, this occurs in systems containing combined CPU

203

CPU CPU

S/

\ .
fast access Wﬁ'cc fast access
eSS

memory memory

computer

Figure 5.9 NUMA and CPU scheduling.

and memory boards. The CPUs on a board can access the memory on that board
with less delay than they can access memory on other boards in the system.
If the operating system’s CPU scheduler and memory-placement algorithms
work together, then a process that is assigned affinity to a particular CPU
can be allocated memory on the board where that CPU resides. This example
also shows that operating systems are frequently not as cleanly defined and
implemented as described in operating-system textbooks. Rather, the “solid
lines” between sections of an operating system are frequently only “dotted
lines,” with algorithms creating connections in ways aimed at optimizing
performance and reliability.

5.5.3 Load Balancing

On SMP systems, it is important to keep the workload balanced among all
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads, along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SMP system. It is important to note that load balancing is typically only
necessary onsystems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE scheduler

204

Chapter5 oczzo Dcheniiing
available for FreeBSD systems implement both techniques. Linux runs its load-
balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.5.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its data
being in that processor’s cache memory. Either pulling or pushing a process
from one processor to another invalidates this benefit. As is often the case
in systems engineering, there is no absolute rule concerning what policy is
best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.5.4 Multicore Processors

Traditionally, SMP systems have allowed several threads to run concurrently by
providing multiple physical processors. However, a recent trend in computer
hardware has been to place multiple processor cores on the same physical chip,
resulting in a =222z sroczoecr. Bach core has a register set to maintain its
archltectural state and thus appears to the operating system to be a separate
physical processor. SMP systems that use multicore processors are faster and
consume less power than systems in which each processor has its own physical
chip.

Multicore processors may complicate scheduling issues. Let’s consider how
this can happen. Researchers have discovered that when a processor accesses
memory, it spends a significant amount of time waiting for the data to become
available. This situation, known as a =22 ¢zl may occur for various
reasons, suich as a cache miss (accessm0 data that is not in cache memory).
Figure 5.10 illustrates a memory stall. In this scenario, the processor can spend
up to 50 percent of its time waiting for data to become available from memory.
To remedy this situation, many recent hardware designs have implemented
multithreaded processor cores in which two (or more) hardware threads are
assigned to each core. That way, if one thread stalls while waiting for memory,
the core can switch to another thread. Figure 5.11 illustrates a dual-threaded
processor core on which the execution of thread 0 and the execution of thread 1
are interleaved. From an operating-system perspective, each hardware thread
appears as a logical processor that is available to run a software thread. Thus,
on a dual-threaded, dual-core system, four logical processors are presented to
the operating system. The UltraSPARC T1 CPU has eight cores per chip and four

C compute cycle M memory stall cycle

th
_thread || o M c M c M c M

time

Figure 5.10 Memory stall.

5.5 Multiple-Processor Scheduling 205

thread, c M c M c M c
_threads | M c M c M c
time

Figure 5.11 Multithreaded multicore system.

hardware threads per core; from the perspective of the operating system, there
appear to be 32 logical processors.

In general, there are two ways to multithread a processor: coarse-grained
and fine-grained multithreading. With coarse-grained multithreading, a thread
executes on a processor until a long-latency event such as a memory stall occurs.
Because of the delay caused by the long-latency event, the processor must
switch to another thread to begin execution. However, the cost of switching
between threads is high, as the instruction pipeline must be flushed before
the other thread can begin execution on the processor core. Once this new
thread begins execution, it begins filling the pipeline with its instructions.
Fine-grained (or interleaved) multithreading switches between threads at a
much finer level of granularity—typically at the boundary of an instruction
cycle. However, the architectural design of fine-grained systems includes logic
for thread switching. As a result, the cost of switching between threads is small.

Notice that a multithreaded multicore processor actually requires two
different levels of scheduling. On one level are the scheduling decisions that
must be made by the operating system as it chooses which software thread to
run on each hardware thread (logical processor). For this level of scheduling,
the operating system may choose any scheduling algorithm, such as those
described in Section 5.3. A second level of scheduling specifies how each core
decides which hardware thread to run. There are several strategies to adopt
in this situation. The UltraSPARC T1, mentioned earlier, uses a simple round-
robin algorithm to schedule the four hardware threads to each core. Another
example, the Intel Itanium, is a dual-core processor with two hardware-
managed threads per core. Assigned to each hardware thread is a dynamic
urgency value ranging from 0 to 7, with O representing the lowest urgency,
and 7 the highest. The Itanium identifies five different events that may trigger
a thread switch. When one of these events occurs, the thread-switching logic
compares the urgency of the two threads and selects the thread with the highest
urgency value to execute on the processor core.

5.5.5 Virtualization and Scheduling

A system with virtualization, even a single-CPU system, frequently acts like
a multiprocessor system. The virtualization software presents one or more
virtual CPUs to each of the virtual machines running on the system and
then schedules the use of the physical CPUs among the virtual machines.
The significant variations between virtualization technologies malke it difficult
to summarize the effect of virtualization on scheduling (see Section 2.8).
In general, though, most virtualized environments have one host operating

206

5.6

Chapter 5 Frocess Sche g

system and many guest operating systems. The host operating system creates
and manages the virtual machines, and each virtual machine has a guest
operating system installed and applications running within that guest. Each
guest operating system may be fine-tuned for specific use cases, applications,
and users, including time sharing or even real-time operation.

Any guest operating-system scheduling algorithm that assumes a certain
amount of progress in a given amount of time w111 be negatively impacted by
virtualization. C01151del a time-sharing operating system that tries to allot 100
milliseconds to each time slice to give users a reasonable response time. Within
a virtual machine, this operating system is at the mercy of the virtualization
system as to what CPU resources it actually receives. A given 100-millisecond
time slice may take much more than 100 milliseconds of virtual CPU time.
Depending on how busy the system is, the time slice may take a second or more,
resulting in very poor response times for users logged into that virtual machine.
The effect on a real-time operating system would be even more catastrophic.

The net effect of such scheduling layering is that individual virtualized
operating systems receive only a portion of the available CPU cycles, even
though they believe they are receiving all of the cycles and indeed that they
are scheduling all of those cycles. Commonly, the time-of-day clocks in virtual
machines are incorrect because timers take longer to trigger than they would on
dedicated CPUs. Virtualization can thus undo the good scheduling-algorithm
efforts of the operating systems within virtual machines.

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Windows XP.
Recall that Linux does not distinguish between processes and threads; thus,
we use the term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling where each thread belongs to
one of six classes:

1. Time sharing (TS)

Interactive (IA)

P2

[&%)

Real time (RT)

AR

System (SYS)

o

Fair share (FSS)

%38

Fixed priority (FP)

Within each class there are different priorities and different scheduling algo-
rithms.

The default scheduling class for a process is time sharing. The scheduling
policy for the time-sharing class dynamically alters priorities and assigns time

5.6 iy Dustam Duminslas 207

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

Figure 5.12 Solaris dispatch table for time-sharing and interactive threads.

slices of different lengths using a multilevel feedback queue. By default, there
is an inverse relationship between priorities and time slices. The higher the
priority, the smaller the time slice; and the lower the priority, the larger the
time slice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications—such as those created by the KDE or GNOME
window managers—a higher priority for better performance.

Figure 5.12 shows the dispatch table for scheduling time-sharing and
interactive threads. These two scheduling classes include 60 priority levels,
but for brevity, we display only a handful. The dispatch table shown in Figure
5.12 contains the following fields:

Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

Time quantum. The time quantum for the associated priority. This illus-
trates the inverse relationship between priorities and time quanta: the
lowest priority (priority 0) has the highest time quantum (200 millisec-
onds), and the highest priority (priority 59) has the lowest time quantum
(20 milliseconds).

Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered

208

Chapter5 I

CPU-intensive. As shown in the table, these threads have their priorities
lowered.

© Return from sleep. The priority of a thread that is returning from sleeping
(such as waiting for 1/0). As the table illustrates, when I1/0 is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Threads in the real-time class are given the highest priority. This assignment
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Solaris uses the system class to run kernel threads, such as the scheduler
and paging daemon. Once established, the priority of a system thread does not
change. The system class is reserved for kernel use (user processes running in
kernel mode are not in the system class).

The fixed-priority and fair-share classes were introduced with Solaris 9.
Threads in the fixed-priority class have the same priority range as those in
the time-sharing class; however, their priorities are not dynamically adjusted.
The fair-share scheduling class uses CPU skzres instead of priorities to
make scheduling decisions. CPU shares indicate entitlement to available CPU
resources and are allocated to a set of processes (known as a project).

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CPU
until it (1) blocks, (2) uses its time slice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. Figure 5.13 illustrates how the six scheduling classes
relate to one another and how they map to global priorities. Notice that the
kernel maintains 10 threads for servicing interrupts. These threads do not
belong to any scheduling class and execute at the highest priority (160—169).
Asmentioned, Solaris has traditionally used the many-to-many model (Section
4.2.3) but switched to the one-to-one model (Section 4.2.2) beginning with
Solaris 9.

5.6.2 Example: Windows XP Scheduling

Windows XP schedules threads using a priority-based, preemptive scheduling
algorithm. The Windows XP scheduler ensures that the highest-priority thread
will always run. The portion of the Windows XP kernel that handles scheduling
is called the dispatcher. A thread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for 1/0. If a
higher-priority real-time thread becomes ready while a lower-priority thread
is running, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variabl :

5.6 209
global scheduling
priority order
169 '
highest . first
interrupt threads
160
159
realtime (RT) threads
100
99
system (SYS) threads
60
59 fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads
owest 0 interactive (l1A) threads ¥ last
Figure 5.13 Solaris scheduling.
contains threads having priorities from 1 to 15, and the zeal-timme clzes contains

threads with priorities ranging from 16 to 31. (There is also a thread running at
priority O that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and travelses the set of queues from highest to
lowest until it fmds a thread that is ready to run. If no ready thread is found,
the chspatchel will execute a special thread called the iciz thread.

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 API. The Win32 API identifies several priority classes to
which a process can belong. These include:

& REALTIME PRIORITY_CLASS
2 HIGH PRIORITY_CLASS

ABOVE_NORMAL_PRIORITY_CLASS
2 NORMAL_PRIORITY_CLASS

210

Chapter 5 =vococs Doredaing

iy high 22%?: normal gglrcr)r\;\;! gjrliirity

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

Figure 5.14 Windows XP priorities.

BELOW_NORMAL_PRIORITY_CLASS
IDLE_PRIORITY_CLASS

Priorities in all classes except the REALTIME PRIORITY.CLASS are variable,

meaning that the priority of a thread belonging to one of these classes can
change.

A thread within a given priority classes also has a relative priority. The
values for relative priorities include:
TIME_CRITICAL
HIGHEST
ABOVENORMAL
¢ NORMAL
BELOW_NORMAL
LOWEST
IDLE

The priority of each thread is based on both the priority class it belongs to and its
relative priority within that class. This relationship is shown in Figure 5.14. The
values of the priority classes appear in the top row. The left column contains the
values for the relative priorities. For example, if the relative priority of a thread
in the ABOVE.NORMAL_PRIORITY_CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that class. The base priorities
for each priority class are:

REALTIME_PRIORITY_CLASS—24
HIGH PRIORITY_CLASS—13

o ABOVENORMAL_PRIORITY_CLASS—10
¢ NORMAL_PRIORITY_CLASS—38

¢ BELOW _NORMAL PRIORITY_CLASS—6
¢ TDLE_PRIORITY_CLASS—4

Processes are typically members of the NORMAL_PRIORITY_-CLASS. A pro-
cess belongs to this class unless the parent of the process was of the
IDLE_PRIORITY _CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread’s time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority is
never lowered below the base priority, however. Lowering the priority tends
to limit the CPU consumption of compute-bound threads. When a variable-
priority thread is released from a wait operation, the dispatcher boosts the
priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get a large
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tends to give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the I/0 devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a useris running an interactive program, the system needs to provide
especially good performance. For this reason, Windows XP has a special
scheduling rule for processes in the NORMAL PRIORITY_CLASS. Windows XP
distinguishes between the foreground process that is currently selected on the
screen and the background processes that are not currently selected. When a
process moves into the foreground, Windows XP increases the scheduling
quantum by some factor—typically by 3. This increase gives the foreground
process three times longer to run before a time-sharing preemption occurs.

5.6.3 Example: Linux Scheduling

Prior to Version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With Version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: a real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme wherein
numerically lower values indicate higher priorities.

212 Chapter 5 Process Scheduling

numeric relative time
priority priority quantum
0 highest 200 ms
° real-time
* tasks
99
100
* other
* tasks
140 lowest 10ms

Figure 5.15 The relationship between priorities and time-slice length.

Unlike schedulers for many other systems, including Solaris (Section 5.6.1)
and Windows XP (Section 5.6.2), Linux assigns higher-priority tasks longer time
quanta and lower-priority tasks shorter time quanta. The relationship between
priorities and time-slice length is shown in Figure 5.15.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time slice. When a task has exhausted its time
slice, it is considered expired and is not eligible for execution again until all
other tasks have also exhausted their time quanta. The kernel maintains a list
of all runnable tasks in a rungueune data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays: active and expired. The
active array contains all tasks with time remaining in their time slices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.16). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks have
exhausted their time slices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by POSIX.1b, which is
described in Section 5.4.2. Real-time tasks are assigned static priorities. All

active expired
array array
priority task lists priority task lists
[0] o—0 [0] o0—0—0
1] o—0—0 1] O
[140] O [140] o0—0

Figure 5.16 List of tasks indexed according to priority.

5.7

213

other tasks have dynamic priorities that are based on their nice values plus or
minus the value 5. The interactivity of a task determines whether the value
5 will be added to or subtracted from the nice value. A task’s interactivity is
determined by how long it has been sleeping while waiting for 1/0. Tasks that
are more interactive typically have longer sleep times and therefore are more
likely to have adjustments closer to —5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

A task’s dynamic priority is recalculated when the task has exhausted its
time quantum and is to be moved to the expired array. Thus, when the two
arrays are exchanged, all tasks in the new active array have been assigned new
priorities and corresponding time slices.

How do we select a CPU-scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As a result, selecting an algorithm can be difficult.

The first problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these elements. Our criteria may include several
measures, such as:

© Maximizing CPU utilization under the constraint that the maximum
response time is 1 second

Q

Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

Deterministic modeling is one type of analytic evaluation. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0, in the order given, with the
length of the CPU burst given in milliseconds:

214

Chapter 5 Process Schedul

Process Burst Time

Py 10
P 29
P 3
Py 7
Py 12

Consider the FCFS, §JF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

Pa

0 10 39 42 49 61

The waiting time is 0 milliseconds for process P;, 10 milliseconds for process
P>, 39 milliseconds for process P;, 42 milliseconds for process Py, and 49
milliseconds for process Ps. Thus, the average waiting time is (0 + 10 + 39
+ 42 + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute the processes as

0 3 10 20 32 61

The waiting time is 10 milliseconds for process Py, 32 milliseconds for process
P;, 0 milliseconds for process P;, 3 milliseconds for process P, and 20
milliseconds for process Ps. Thus, the average waiting time is (10 + 32 + 0
+ 3+ 20)/5 = 13 milliseconds.

With the RR algorithm, we execute the processes as

P P

3 5

0 10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process P;, 32 milliseconds for process
P;, 20 milliseconds for process P;, 23 milliseconds for process P, and 40
milliseconds for process Ps. Thus, the average waiting time is (0 + 32 + 20
+ 23 +40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SJF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate value.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In

5.7 Afogowiarn Svslvaticn 215

cases where we are running the same program over and over again and can
measure the program’s processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SJF policy will always result in the minimum waiting time.

5.7.2 Queueing Models

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CPU and I/0 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CPU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CPU is a server with its ready queue, as is
the I/0 system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let 11 be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, A x W
new processes will arrive in the queue. If the system is in a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n=Nx W.

This equation, known as Little’s formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little’s formula to compute one of the three variables if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—Dbut unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

216

Chapter 5 Process Sc

_] performance
simulation > statistics

for FCFS
FCFS

CPU 10
/O 213
actual CPU 12 performance
process —=—>/0 112 > simulation = statistics
execution CPU 2 for SJF
/O 147
CPU 173 SIF

trace tape

performance
simulation > statistics

for RR (g = 14)
RR (g=14)

Figure 5.17 Evaluation of CPU schedulers by simulation.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable’s value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
executes, statistics that indicate algorithm performance are gathered and
printed.

The data to drive the simulation can be generated in several ways. The
most common method uses a random-number generator thatis programmed to
generate processes, CPU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If a distribution is to be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of events in the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create a trace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.17). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, butit also takes more
computer time. In addition, trace tapes can require large amounts of storage

5.8

217

5.8 Summary

space. Finally, the design, coding, and debugging of the simulator can be a
major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.

The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninteractive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal I/0. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
less than 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. A workstation that performs
high-end graphical applications, for instance, may have scheduling needs
different from those of a Web server or file server. Some operating systems—
particularly several versions of UNIX—allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to allow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. TheJava, /POSIX, and / WinAPI/ provide such functions. The downfall
of this approach is that performance-tuning a system or application most often
does not result in improved performance in more general situations.

@r

o ki

liselas
dEE

i

ey

<y

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

218

Chapter 5 “wocces Soiacisling

First-come, first-served (FCFS) scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SJF) scheduling is provably optimal, providing the shortest average
waiting time. Implementing SJF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SJF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SJF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.

Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CPU to the first process in the ready
queue for g time units, where g is the time quantum. After g time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm is nonpreemptive; the RR algorithm is preemptive. The
SJF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
uses FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedule itself independently. Typically, each processor
maintains its own private queue of processes (or threads), all of which
are available to run. Additional issues related to multiprocessor scheduling
include processor affinity, load balancing, and multicore processing as well as
scheduling on virtualization systems.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a “representative”
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
“real-world” environment.

5.1 Whyisitimportant for the scheduler to distinguish I/0-bound programs
from CPU-bound programs?

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Exercises 219

A CPU-scheduling algorithm determines an order for the execution
of its scheduled processes. Given n processes to be scheduled on one
processor, how many different schedules are possible? Give a formula
in terms of n.

Consider a system running ten I/0-bound tasks and one CPU-bound
task. Assume that the I/O-bound tasks issue an I/O operation once for
every millisecond of CPU computing and that each I/0 operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
Describe the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond

b. The time quantum is 10 milliseconds

What advantage is there in having different time-quantum sizes at
different levels of a multilevel queueing system?

Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU
time allocated to the user’s process?

Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 557

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?

c. Assume that a thread with priority 35 blocks for 1/0 before its time
quantum has expired. What new priority will the scheduler assign
this thread?

Explain the differences in how much the following scheduling algo-
rithms discriminate in favor of short processes:

a. FCFEs

b. RR

c. Multilevel feedback queues
Consider the exponential average formula used to predict the length of

the next CPU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a. o =0and 1y = 100 milliseconds

b. o« =0.99 and 75 = 10 milliseconds

220 Chapter 5

5.9 Which of the following scheduling algorithms could result in starvation?

a.
b.

oo

First-come, first-served
Shortest job first
Round robin

Priority

5.10 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor
time in the recent past. Why will this algorithm favor 1/0-bound
programs and yet not permanently starve CPU-bound programs?

511 Using the Windows XP scheduling algorithm, determine the numeric
priority of each of the following threads.

A thread in the REALTIME_PRIORITY_CLASS with a relative priority
of HIGHEST

A thread in the NORMAL_PRIORITY_CLASS with a relative priority
of NORMAL

A thread in the HIGH PRIORITY.CLASS with a relative priority of
ABOVENORMAL

512 Consider a variant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

What would be the effect of putting two pointers to the same
process in the ready queue?

What would be two major advantages and two disadvantages of
this scheme?

How would you modify the basic RR algorithm to achieve the same
effect without the duplicate pointers?

5.13 Consider the following set of processes, with the length of the CPU burst
given in milliseconds:

Process Burst Time Priority

P 10 3
P, 1 1
Ps 2 3
P, 1 4
Ps 5 2

5.14

5.15

5.16

5.17

T o
ALK

SE8 221
The processes are assumed to have arrived in the order Py, P, Ps, Py, Ps,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCES, SJF,
nonpreemptive priority (asmaller priority number implies a higher
priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. Whatis the waiting time of each process for each of these schedul-
ing algorithms?

d. Which of the algorithms results in the minimum average waiting
time (over all processes)?

The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: the higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P; is 40, for process P is 18,
and for process P; is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?

Discuss how the following pairs of scheduling criteria conflict in certain
settings.

a. CPU utilization and response time
b. Average turnaround time and maximum waiting time

¢. 170 device utilization and CPU utilization

Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate o; when it is running, its priority
changes at a rate B. All processes are given a priority of 0 when they
enter the ready queue. The parameters o and 3 can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from > o > 0?
b. What is the algorithm that results froma < f <07

Suppose that the following processes arrive for execution at the times
indicated. Each process will run for the amount of time listed. In
answering the questions, use nonpreemptive scheduling, and base all

222

Chapter 5 Procese Scheduling

decisions on the information you have at the time the decision must be
made.

Process Arrival Time Burst Time

Py 0.0 8
Py 0.4 4
Ps 1.0 1

a. Whatis the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The §JF algorithm is supposed to improve performance, but notice
that we chose to run process P; at time 0 because we did not know
that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CPU is left idle for the first
1 unit and then SJF scheduling is used. Remember that processes
Py and P, are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

Feedback queues were originally implemented on the CTSS system described
in Corbato et al. [1962]. This feedback queue scheduling system was analyzed
by Schrage [1967]. The preemptive priority scheduling algorithm of Exercise
5.16 was suggested by Kleinrock [1975].

Anderson et al. [1989], Lewis and Berg [1998], and Philbin et al. [1996]
discuss thread scheduling. Multicore scheduling is examined in McNairy and
Bhatia [2005] and Kongetira et al. [2005].

Scheduling techniques that take into account information regarding pro-
cess execution times from previous runs are described in Fisher [1981], Hall
etal. [1996], and Lowney et al. [1993].

Fair-share schedulers are covered by Henry [1984], Woodside [1986], and
Kay and Lauder [1988]. ,

Scheduling policies used in the UNIX V operating system are described
by Bach [1987]; those for UNIX FreeBSD 5.2 are presented by McKusick and
Neville-Neil [2005]; and those for the Mach operating system are discussed
by Black [1990]. Love [2005] covers scheduling in Linux. Details of the ULE
scheduler can be found in Roberson [2003]. Solaris scheduling is described
by Mauro and McDougall [2007]. Solomon [1998], Solomon and Russinovich
[2000], and Russinovich and Solomon [2005] discuss scheduling in Windows
internals. Butenhof [1997] and Lewis and Berg [1998] describe scheduling
in Pthreads systems. Siddha et al. [2007] discuss scheduling challenges on
multicore systems.

Part Three

6.1

CHAPTER

7
A

£
S Jmy DT
///&/’/f,///ﬁn /7

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
threads, discussed in Chapter 4. Concurrent access to shared data may resultin
data inconsistency, however. In this chapter, we discuss various mechanisms
to ensure the orderly execution of cooperating processes that share a logical
address space, so that data consistency is maintained.

ra Y\

s To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

o To present both software and hardware solutions of the critical-section
problem.

= To introduce the concept of an atomic transaction and describe mecha-
nisms to ensure atomicity.

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, all running asynchronously and possibly
sharing data. We illustrated this model with the producer—consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let’s return to our consideration of the bounded buffer. As we pointed
out, our original solution allowed at most BUFFER_SIZE — 1 items in the buffer
at the same time. Suppose we want to modify the algorithm to remedy this
deficiency. One possibility is to add an integer variable counter, initialized to
0. counter is incremented every time we add a new item to the buffer and is

225

226 Chapter 6 Cymciooizziion

decremented every time we remove one item from the buffer. The code for the
producer process can be modified as follows:

while (true) {
/* produce an item in nextProduced */
while (counter == BUFFERSIZE)
; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFERSIZE;
counter++;

}

The code for the consumer process can be modified as follows:

while (true) {
while (counter == 0)
; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER.SIZE;
counter—--;
/* consume the item in nextConsumed */

}

Although both the producer and consumer routines shown above are
correct separately, they may not function correctly when executed concurrently.
As an illustration, suppose that the value of the variable counter is currently
5 and that the producer and consumer processes execute the statements
“counter++” and “counter--" concurrently. Following the execution of these
two statements, the value of the variable counter may be 4, 5, or 6! The only
correct result, though, is counter == 5, which is generated correctly if the
producer and consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement “counter++” may be implemented in machine language (on
a typical machine) as

register; = counter
registery = 1’€gzs.te1'1 +1
counter = registerq

where register; is one of the local CPU registers. Similarly, the statement
register,“counter—-"is implemented as follows:

register, = counter
register, = registery — 1
counter = registery

where again register; is on eof the local CPU registers. Even though register; and
register, may be the same physical register (an accumulator, say), remember
that the contents of this register will be saved and restored by the interrupt
handler (Section 1.2.3).

6.2

227

The concurrent execution of “counter++” and “counter—-"1is equivalent
to a sequential execution in which the lower-level statements presented
previously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

To: producer execute register; = counter {register; =5}
Ti: producer execute registery =register; +1 {register, =6}
Ty: consumer execute register, = counter {register, = 5}
Ts: consumer execute register, = register, —1 {register; =4}
Ty producer execute counter =register; {counter = 6}
Ts: consumer execute counter = register; {counter = 4}

Notice that we have arrived at the incorrect state “counter == 47, indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at Ty and Ts, we would arrive at the incorrect state
“counter ==6".

We would arrive at this incorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is called a rzace « .. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
the variable counter. To make such a guarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Furthermore,
with the growth of multicore systems, there is an increased emphasis on
developing multithreaded applications wherein several threads—which are
quite possibly sharing data—are running in parallel on different processing
cores. Clearly, we want any changes that result from such activities not
to interfere with one another. Because of the importance of this issue, a
major portion of this Chapter is concerned with = zand

Consider a system consisting of n processes {Py, Pr, ..., Pu—1}. Each process
has a segment of code, called a critical in which the process may
be chancrmcr common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problem is to design a protocol that the processes
can use to cooperate. Hach process must 1equest permission to enter 1ts critical
section. The section of code 1mp1ement1ncf th1s 1equest isthe e ek The
critical section may be followed by an exit secticn. The remammo code is the
cer section. The general structure of a typlcal process P; is shown in

228

Chapter 6 Synchronization

entry section

critical section

exit section

remainder section
} while (TRUE);

Figure 6.1 General structure of a typical process F,.

Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process P; is executing in its critical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection cannot
be postponed indefinitely.

W

Bounded waiting. There exists a bound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the Aelau ve speed of the 1 processes.

Ata given pointin time, many kernel- mode processes may be active in the
operatmo system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
the file to the list or removing it from the list). If two processes were to open files
simultaneously, the separate updates to this list could result in a race condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptive kernels and (2) nonpreemptive kernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode

6.3

6.3 Peterson’s Solution 229

to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as only
one process is active in the kernel at a time. We cannot say the same about
preemptive kernels, so they must be carefully designed to ensure that shared
kernel data are free from race conditions. Preemptive kernels are especially
difficult to design for SMP architectures, since in these environments it is
possible for two kernel-mode processes to run simultaneously on different
ProCcessors.

Why, then, would anyone favor a preemptive kernel over a nonpreemptive
one? A preemptive kernel is more suitable for real-time programming, as it will
allow a real-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since there is less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kernel code that does not behave in this way. Later in
this chapter, we explore how various operating systems manage preemption
within the kernel.

5 i o s gy pon § o
FEterson

Next, we illustrate a classic software-based solution to the critical-section
problem known as Peterson’s solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson’s solution will work correctly on
sucharchitectures. However, we present the solution because it provides a good
algorithmic description of solving the critical-section problem and illustrates
some of the complexities involved in designing software that addresses the
requirements of mutual exclusion, progress, and bounded waiting.

Peterson’s solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered Py and P;. For convenience, when presenting P;, we use P; to
denote the other process; that is, j equals 1 — 1.

Peterson’s solution requires the two processes to share two data items:

int turn;
boolean flagl[2];

The variable turn indicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is allowed to execute in its critical section. The
flag array is used to indicate if a process is ready to enter its critical section.
For example, if £lagli] is true, this value indicates that F; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Figure 6.2.

To enter the critical section, process P; first sets flagl[i] to be true and
then sets turn to the value j, thereby asserting that if the other process wishes
to enter the critical section, it can do so. If both processes try to enter at the same
time, turn will be set to both 1 and j at roughly the same time. Only one of these
assignments will last; the other will occur but will be overwritten immediately.

230

Chapter 6 55

flag[i] = TRUE;
turn = j;
while (flagl[j] && turn == j);

critical section

| flagli] = FALSE;

remainder section
} while (TRUE);

Figure 6.2 The structure of process F, in Peterson’s solution.

The eventual value of turn determines which of the two processes is allowed
to enter its critical section first.
We now prove that this solution is correct. We need to show that:

i, Mutual exclusion is preserved.

E\)

The progress requirement is satisfied.

G

The bounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flaglj] == false or turn == i. Also note that, if both processes
can be executing in their critical sections at the same time, then flag[0] ==
flagl1] ==true. These two observations imply that Py and P; could not have
successfully executed their while statements at about the same time, since the
value of turn can be either 0 or 1 but cannot be both. Hence, one of the processes
—say, P;—must have successfully executed the while statement, whereas P;
had to execute at least one additional statement (“turn == j”). However, at
that time, flag[j] == true and turn == j, and this condition will persist as
long as P; is in its critical section; as a result, mutual exclusion is preserved.

To prove properties 2 and 3, we note that a process P; can be prevented from
entering the critical section only if it is stuck in the while loop with the condition
flag[jl == true and turn == j; this loop is the only one possible. If P; is not
ready to enter the critical section, then flag[j] == false, and P; can enter its
critical section. If P; has set flag[j] to true and is also executing in its while
statement, then either turn == i or turn == j. If turn == i, then P; will enter
the critical section. If turn == j, then P; will enter the critical section. However,
once P; exits its critical section, it will reset f1ag[j] to false, allowing P; to
enter its critical section. If P; resets f1lag[j] to true, it must also set turn to i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section (progress) after at most
one entry by P; (bounded waiting).

6.4

6.4 Cyncoaropizaiion Saicisnis 231

acquire lock

critical section
release lock
remainder section

} while (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

We have just described one software-based solution to the critical-section
problem. However, as mentioned, software-based solutions such as Peterson’s
are not guaranteed to work on modern computer architectures. Instead, we
can generally state that any solution to the critical-section problem requires a
simple tool—a lock. Race conditions are prevented by requiring that critical
regions be protected by locks. That is, a process must acquire a lock before
entering a critical section; it releases the lock when it exits the critical section.
This is illustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the designs of such locks
can be quite sophisticated.

We start by presenting some simple hardware instructions thatare available
on many systems and showing how they can be used effectively in solving the
critical-section problem. Hardware features can make any programming task
easier and improve system efficiency.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is often the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet(boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.

232

Chapter 6 Synch:
do {
while (TestAndSet (&lock))
; // do nothing

// critical section
lock = FALSE;

// remainder section
} while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

message is passed to all the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also consider the effect
on a system’s clock if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words zfcraiczlly—that is, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions by describing the TestAndSet () and Swap () instructions.

The TestAndSet () instruction can be defined as shown in Figure 6.4. The
important characteristic of this instruction is that it is executed atomically.
Thus, if two TestAndSet () instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process P; is shown in Figure 6.5.

The Swap() instruction, in contrast to the TestAndSet () instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet () instruction, it is executed atomically. If the machine
supports the Swap () instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P; is shown in Figure 6.7.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present
another algorithm using the TestAndSet () instruction that satisfies all the
critical-section requirements. The common data structures are

void Swap(boolean *a, boolean *b) {
boolean temp = *a;
*a = *b;
*b = temp;

}

Figure 6.6 The definition of the Swap () instruction.

fon Hardware 233

do {
key = TRUE;
while (key == TRUE)
Swap(&lock, &key);

// critical section
lock = FALSE;

// remainder section
} while (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap () instruction.

boolean waiting([n];
boolean lock;

These data structures are initialized to false. To prove that the mutual-
exclusion requirement is met, we note that process P; can enter its critical
section only if either waitingl[i] == false or key == false. The value
of key can become false only if the TestAndSet() is executed. The first
process to execute the TestAndSet () will find key == false; all others must
wait. The variable waiting[i] can become false only if another process
leaves its critical section; only one waiting[i] is set to false, maintaining the
mutual-exclusion requirement.

do {
waiting[i] = TRUE;
key = TRUE;

while (waitingl[i] && key)
key = TestAndSet (&lock);
waiting[i] = FALSE;

// critical sectiomn
j=a + 1) % n;

while ((j !'= i) && !'waiting[j])
j= G+ 10 % n;

if (5 == 1)
lock = FALSE;
else

waiting[j] = FALSE;

// remainder section
} while (TRUE);

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet ().

234

6.5

Chapter 6 CZ-izconmizzaiion

To prove that the progress requirement is met, we note that the arguments
presented for mutual exclusion also apply here, since a process exiting the .
critical section either sets lock to false or sets waitingl[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, we note that, when
a process leaves its critical section, it scans the array waiting in the cyclic
ordering 1+ 1,i+2,..,1n - 1,0, ..., 1 — 1). It designates the first process in this
ordering that is in the entry section (waiting[j] == true) as the next one to
enter the critical section. Any process waiting to enter its critical section will
thus do so within n — 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
Set () instructions on multiprocessors is not a trivial task. Such implementa-
tions are discussed in books on computer architecture.

The hardware-based solutions to the critical-section problem presented in
Section 6.4 are complicated for application programmers to use. To overcome
this difficulty, we can use a synchronization tool called a z==127

A semaphore S is an integer variable that, apart from 1n1t1ahzat10n is
accessed only through two standard atomic operations: wait () and signal ().
The wait () operation was originally termed P (from the Dutch proberen, “to
test”); signal() was originally called V (from verhogen, “to increment”). The
definition of wait () is as follows:

wait(S) {
while S <=0
; // no-op
S

The definition of signal () is as follows:

signal(S) {
S+ ;
}

All modifications to the integer value of the semaphore in the wait () and
signal () operations must be executed indivisibly. That is, when one process
modifies the semaphore value, no other process can simultaneously modify
that same semaphore value. In addition, in the case of wait (8), the testing of
the integer value of S (S < 0), as well as its possible modification (S--), must
be executed without interruption. We shall see how these operations can be
implemented in Section 6.5.2; first, let us see how semaphores can be used.

6.5.1 Usage

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some

systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P; is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait() operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal () operation
(incrementing the count). When the count for the semaphore goes to 0, all
resources are being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: Py with a statement
51 and P, with a statement S. Suppose we require that S, be executed only
after S; has completed. We can implement this scheme readily by letting P;
and P, share a common semaphore synch, initialized to 0, and by inserting the
statements

513
signal(synch);

in process P; and the statements

wait (synch) ;
52;

in process P,. Because synch is initialized to 0, P, will execute S, only after P;
has invoked signal(synch), which is after statement 5; has been executed.

6.5.2 Implementation

The main disadvantage of the semaphore definition given here is that it requires
busy waiting. While a process is in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,

do {
wait (mutex) ;

// critical section
signal (mutex) ;

// remainder section
} while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.

236

zation

Chapter 6 Synchroniz

where a single CPU is shared among many processes. Busy waiting wastes
CPU cycles that some other process m1ght be able to use p1oduct1vely This
type of semaphore is also called a spinlock because the process “spins” while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can “spin” on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
thewait () and signal () semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CPU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal() operation. The process is
restarted by awakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CPU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a “C” struct:

typedef struct {

int value;

struct process *1ist;
} semaphore;

Each semaphore has an integer value and a list of processes 1ist. When
a process must wait on a semaphore, it is added to the list of processes. A
signal () operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait(semaphore *S) {
S—>value——;
if (S->value < 0) {
add this process to S->1ist;
block();

The signal () semaphore operation can now be defined as

signal (semaphore *S) {
S—>value++t;
if (S->value <= 0) {
remove a process P from S->1ist;
wakeup (P) ;

The block () operation suspends the process that invokes it. The wakeup (P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic system calls.

Note that in this implementation, semaphore values may be negative,
although semaphore values are never negative under the classical definition of
semaphores with busy waiting. If a semaphore value is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer value and
a pointer to a list of PCBs. One way to add and remove processes from the list
so as to ensure bounded waiting is to use a FIFO queue, where the semaphore
contains both head and tail pointers to the queue. In general, however, the list
can use any queueing strategy. Correct usage of semaphores does not depend
on a particular queueing strategy for the semaphore lists.

It is critical that semaphores be executed atomically. We must guarantee
that no two processes can execute wait () and signal () operations on the
same semaphore at the same time. This is a critical-section problem; and
in a single-processor environment (that is, where only one CPU exists), we
can solve it by simply inhibiting interrupts during the time the wait () and
signal () operations are executing. This scheme works in a single-processor
environment because, once interrupts are inhibited, instructions from different
processes cannot be interleaved. Only the currently running process executes
until interrupts are reenabled and the scheduler can regain control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficult task and furthermore can seriously dimin-
ish performance. Therefore, SMP systems must provide alternative locking
techniques—such as spinlocks—to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completely eliminated busy
waiting with this definition of the wait () and signal () operations. Rather,
we have moved busy waiting from the entry section to the critical sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of the wait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
Thus, the critical section is almost never occupied, and busy waiting occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or

238

Chapter 6

even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a si gnal O operation. When such a state is reached, these
processes are said to be ciea:

To illustrate this, we consider a system consisting of two processes, Py and
Py, each accessing two semaphores, S and Q, set to the value 1:

AT . o /‘nn
T

Py Py
wait (8); wait(Q);
wait(Q); wait(S);
signal(S); signal(Q);
signal (Q); signal(S);

Suppose that Py executes wait (S) and then P; executes wait(Q). When Py
executes wait (Q), it must wait until P; executes signal (Q). Similarly, when
Py executes wait (S), it must wait until Py executes signal (S). Since these
signal () operations cannot be executed, Py and P; are deadlocked.

We say that a set of processes is in a deadlock state when every process
in the set is waiting for an event that can be caused only by another process
in the set. The events with which we are mainly concerned here are resource
acquisition and release. However, other types of events may result in deadlocks,
as we show in Chapter 7. In that chapter, we describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
fien, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we remove processes from the list associated
with a semaphore in LIFO (last-in, first-out) order.

6.5.4 Priority Inversion

A scheduling challenge arises when a higher-priority process needs to read
or modify kernel data that are currently being accessed by a lower-priority
process—or a chain of lower-priority processes. Since kernel data are typically
protected with a lock, the higher-priority process will have to wait for a
lower-priority one to finish with the resource. The situation becomes more
complicated if the lower-priority process is preempted in favor of another
process with a higher priority. As an example, assume we have three processes,
L, M, and H, whose priorities follow the order L < M < H. Assume that
process H requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R. However,
now suppose that process M becomes runnable, thereby preempting process

6.6

6.6 _oooicProoiziio ot Duniohironinaiion 239

PRIORITY INVERSION AND THE MARS PATHFINDER

Priority inversion can be more than a scheduling inconvenience. On systems
with tight time constraints (such as real-time systems—see Chapter 19),
priority inversion can cause a process to take longer than it should to
accomplish a task. When that happens, other failures can cascade, resulting
in system failure.

Consider the Mars Pathfinder, a NASA space probe that landed a robot, the
Sojourner rover, on Mars in 1997 to conduct experiments. Shortly after the
Sojourner began operating, it started to experience frequent computer resets.
Each reset reinitialized all hardware and software, including communica-
tions. If the problem had not been solved, the Sojourner would have failed in
its mission.

The problem was caused by the fact that one high-priority task, “be_dist,”
was taking longer than expected to complete its work. This task was being
forced to wait for a shared resource that was held by the lower-priority
“ASI/MET” task, which in turn was preempted by multiple medium-priority
tasks. The “bc_dist” task would stall waiting for the shared resource, and
ultimately the “bc_sched” task would discover the problem and perform the
reset. The Sojourner was suffering from a typical case of priority inversion.

The operating system on the Sojourner was VxWorks (see Section 19.6),
which had a global variable to enable priority inheritance on all semaphores.
After testing, the variable was set on the Sojourner (on Mars!), and the
problem was solved.

A full description of the problem, its detection, and its solu-
tion was written by the software team lead and is available at
research.microsoft.com/mbj/Mars_Pathfinder/Authoritative_Account.html.

L. Indirectly, a process with a lower priority—process M—has affected how
long process H must wait for L to 1ehnqulsh resource K.

Thls problemis knownas -ricrity imversicn. It occurs only in systems with
more than two priorities, so one solution is to have only two priorities. That is
insufficient for most general-purpose operating systems, howeve1 Typ1ca11y
these systems solve the problem by implementing a =zic:
zraizotl. According to this protocol, all processes that are accessmcr resources
needed by a h10her—p11or1ty process inherit the higher priority untﬂ they are
finished with the resources in question. When they are finished, their priorities
revert to their original values. In the example above, a priority-inheritance
protocol would allow process L to temporarily inherit the priority of process
H, thereby preventing process M from preempting its execution. When process
L had finished using resource R, it would relinquish its inherited priority from
Hand assumeits original priority. Because resource R would now be available,
process H—not M—would run next.

In this section, we present a number of synchronization problems as examples
of a large class of concurrency-control problems. These problems are used for

240 Chapter 6

// produce an item in nextp

wait(empty) ;
wait (mutex) ;

// add nextp to buffer

signal (mutex) ;
signal (full);
} while (TRUE);

Figure 6.10 The structure of the producer process.

testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.

6.6.1 The Bounded-Buffer Probiem

The bounded-buffer problem was introduced in Section 6.1; it is commonly used
to illustrate the power of synchronization primitives. Here, we present a
general structure of this scheme without committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and full semaphores
count the number of empty and full buffers. The semaphore empty is initialized
to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait (full);
wait (mutex) ;

// remove an item from buffer to nextc

signal (mutex) ;
signal (empty) ;

// consume the item in nextc
} while (TRUE);

Figure 6.11 The structure of the consumer process.

aficn 241

6.6.2 The Readers-Writers Problem

Suppose that a database is to be shared among several concurrent processes.
Some of these processes may want only to read the database, whereas others
may want to update (that is, to read and write) the database. We distinguish
between these two types of processes by referring to the former as readers
and to the latter as writers. Obviously, if two readers access the shared data
simultaneously, no adverse effects will result. However, if a writer and some
other process (either a reader or a writer) access the database simultaneously,
chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database while writing to the database. This
synchronization problem is referred to as the readers—writers problem. Since it
was originally stated, it has been used to test nearly every new synchronization
primitive. The readers—writers problem has several variations, all involving
priorities. The simplest one, referred to as the first readers—writers problem,
requires that no reader be kept waiting unless a writer has already obtained
permission to use the shared object. In other words, no reader should wait for
other readers to finish simply because a writer is waiting. The second readers—
writers problem requires that, once a writer is ready, that writer performs its
write as soon as possible. In other words, if a writer is waiting to access the
object, no new readers may start reading.

A solution to either problem may result in starvation. In the first case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. Next, we present a solution
to the first readers—writers problem. Refer to the bibliographical notes at the
end of the chapter for references describing starvation-free solutions to the
second readers—writers problem.

In the solution to the first readers—writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual exclusion when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is also used by the first or last
reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for a writer process is shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and 1 readers are waiting, then one reader is queued on wrt, and n — 1 readers
are queued onmutex. Also observe that, when a writer executes sigunal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The 1eade15 writers problem and its solutions have been generalized to
provide reader~writer locks on some systems. Acquiring a 1eade1 writer lock

242 Chapter 6 = ucioorizaiion

do {
wait(wrt);

// writing is performed

signal (wrt);
} while (TRUE);

Figure 6.12 The structure of a writer process.

requires specifying the mode of the lock: either read or write access. When a
process wishes only to read shared data, it requests the reader—writer lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader—writer lock in read mode, but only one process may acquire the lock
for writing, as exclusive access is required for writers.

Reader—writer locks are most useful in the following situations:

In applications whereitis easy to identify which processes only read shared
data and which processes only write shared data.

In applications that have more readers than writers. Thisis because reader—
writer locks generally require more overhead to establish than semaphores
or mutual-exclusion locks. The increased concurrency of allowing multiple
readers compensates for the overhead involved in setting up the reader—
writer lock.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging

do {
wait (mutex) ;
readcount++;
if (readcount == 1)
wait (wrt);
signal (mutex) ;

// reading is performed

wait (mutex) ;
readcount—-;
if (readcount == 0)
signal (wrt);
signal (mutex) ;
} while (TRUE);

Figure 6.13 The structure of a reader process.

243

Figure 6.14 The situation of the dining philosophers.

to one philosopher. In the center of the table is a bowl of rice, and the table is laid
with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at a time. Obviously, she cannot pick up a chopstick that
is already in the hand of a neighbor. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she is finished eating, she puts down both of her chopsticks and starts thinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists dislike philosophers but because it is an example of a large class
of concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free and
starvation-free manner.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait () operation on that
semaphore; she releases her chopsticks by executing the signal() operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick([5E];

where all the elements of chopstick are initialized to 1. The structure of
philosopher 7 is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could create a
deadlock. Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher tries to grab her right chopstick, she will be
delayed forever.

Several possible remedies to the deadlock problem are listed next.

® Allow at most four philosophers to be sitting simultaneously at the table.

244

6.7

Chapter 6 Synic

do {
wait (chopstick[i]);
wait(chopstick[(i+1) % 51);

// eat
signal (chopstick[i]);
signal(chopstick[(i+1) % 51);

// think
} while (TRUE);
Figure 6.15 The structure of philosopher i.

¢ Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this, she must pick them up in a critical section).

© Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

In Section 6.7, we present a solution to the dining-philosophers problem
that ensures freedom from deadlocks. Note, however, that any satisfactory
solution to the dining-philosophers problem must guard against the possibility
that one of the philosophers will starve to death. A deadlock-free solution does
not necessarily eliminate the possibility of starvation.

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer—consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-section
problem. All processes share a semaphore variable mutex, which is initialized
to1. Each process must execute wait (mutex) before entering the critical section
and signal (mutex) afterward. If this sequence is not observed, two processes
may be in their critical sections simultaneously. Next, we examine the various
difficulties that may result. Note that these difficulties will arise even if a
single process is not well behaved. This situation may be caused by an honest
programming error or an uncooperative programimer.

245

¢ Suppose that a process interchanges the order in which the wait () and
signal () operations on the semaphore mutex are executed, resulting in
the following execution:

signal (mutex) ;
critical section
wait(mutex);

In this situation, several processes may be executing in their critical sections
simultaneously, violating the mutual-exclusion requirement. This error
may be discovered only if several processes are simultaneously active
in their critical sections. Note that this situation may not always be
reproducible.

o Suppose that a process replaces signal (mutex) with wait (mutex). That
is, it executes

wait (mutex);
critical section
wait (mutex);

In this case, a deadlock will occur.

Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
occur.

These examples illustrate that various types of errors can be generated easily
when programmers use semaphores incorrectly to solve the critical-section
problem. Similar problems may arise in the other synchronization models
discussed in Section 6.6.

To deal with such errors, researchers have developed high-level language
constructs. In this section, we describe one fundamental high-level synchro-
nization construct—the monitor type.

6.7.1 Usage

A abstract data type — or ADT — encapsulates private data with public methods
to operate on that data. A monitor type is an ADT which presents a set of
programmer-defined operations that are provided mutual exclusion within
the monitor. The monitor type also contains the declaration of variables whose
values define the state of an instance of that type, along with the bodies of
procedures or functions that operate on those variables. The syntax of a monitor
type is shown in Figure 6.16. The representation of a monitor type cannot be
used directly by the various processes. Thus, a procedure defined within a
monitor can access only those variables declared locally within the monitor
and its formal parameters. Similarly, the local variables of a monitor can be
accessed by only the local procedures.

246 Chapter 6 vy
monitoxr monitor name

// shared variable declarations

procedure P1 (. . .) {
}
procedure P2 (. . .) {

}

procedure Pn (. . .) {

}

initialization code (. . .) {

}

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time is active
within the monitor. Consequently, the programmer does not need to code
this synchronization constraint explicitly (Figure 6.17). However, the monitor
construct, as defined so far, is not sufficiently powerful for modeling some
synchronization schemes. For this purpose, we need to define additional syn-
chronization mechanisms. These mechanisms are provided by the condition
construct. A programmer who needs to write a tailor-made synchronization
scheme can define one or more variables of type condition:

condition x, ¥y;

The only operations that can be invoked on a condition variable are wait ()
and signal (). The operation

x.wait();

means that the process invoking this operation is suspended until another
process invokes

x.signal();
The x.signal () operation resumes exactly one suspended process. If no

process is suspended, then the signal () operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure

6.7 owiore 247

entry queue

shared data

Y
operations

initialization
code

Figure 6.17 Schematic view of a monitor.

6.18). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.

Now suppose that, when the x. signal () operationisinvoked by a process
P, there exists a suspended process Q associated with condition x. Clearly, if the
suspended process (is allowed to resume its execution, the signaling process P
must wait. Otherwise, both P and Q would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

Z. Signal and wait. P either waits until) leaves the monitor or waits for
another condition.

%. Signal and continue. Q) either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, the signal-and-continie
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which Q
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it immediately leaves the monitor. Hence, Q is immediately
resumed.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages—such as Erlang—provide some
type of concurrency support using a similar mechanism.

248 Chapter 6

entryqu ‘ &

shared data

queues associated with
X, y conditions

-

operations

initialization
code

Figure 6.18 Monitor with condition variables.

6.7.2 Dining-Philosophers Solution Using Monitors

Next, we illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
code this solution, we need to distinguish among three states in which we may
tind a philosopher. For this purpose, we introduce the following data structure:

enum {THINKING, HUNGRY, EATING} statel[5];

Philosopher i can set the variable state[i] = EATING only if her two
neighbors arenot eating: (state [(i+4) % 5] != EATING)and (state[(i+1)
% 5] 1= EATING).

We also need to declare

condition self[5];

in which philosopher 7 can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

We are now in a position to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controlled by the monitor Din-
ingPhilosophers, whose definitionis shown in Figure 6.19. Each philosopher,
before starting to eat, must invoke the operation pickup (). This act may result
in the suspension of the philosopher process. After the successful completion of
the operation, the philosopher may eat. Following this, the philosopher invokes

6.7 lMonitors 249
monitor dp

enum {THINKING, HUNGRY, EATING} state[5];
condition self[5];

void pickup(int i) {
state[i] = HUNGRY;
test(i);
if (stateli] !'= EATING)
self[i] .wait();

}

void putdown(int 1) {
statel[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);

}

void test(int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(1 + 1) % 5] != EATING)) {
statel[i] = EATING;
self[i] .signal();
4
4

initialization_code() {
for (imt i = 0; i < 5; i++)
statel[i] = THINKING;

}

Figure 6.19 A monitor solution to the dining-philosopher problem.

the putdown() operation. Thus, philosopher i must invoke the operations
pickup () and putdown () in the following sequence:

DiningPhilosophers.pickup(i);
eat
DiningPhilosophers.putdown(i);

Itis easy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

250

Chapter 6 Zvroinniizaiion

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, a semaphore mutex (initialized to 1) is provided.
A process must execute wait (mutex) before entering the monitor and must
execute signal (mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to 0. The
signaling processes can use next to suspend themselves. An integer variable
next_count is also provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by

wait(mutex);
body of F

if (next_count > 0)
signal (next) ;
else
signal (mutex) ;

Mutual exclusion within a monitor is ensured.

We can now describe how condition variables are implemented as well.
For each condition x, we introduce a semaphore x_sem and an integer
variable x_count, both initialized to 0. The operation x.wait() can now be
implemented as

X_count++;
if (next_count > 0)
signal (next);
else
signal (mutex) ;
wait (x_sem) ;
X_count——;

The operation x.signal () can be implemented as

if (x_count > 0) {
next_count++;
signal (x_sem) ;
wait (next);
next_count--—;

}

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.35.

6.7.4 Resuming Processes within a Monitor

We turn now to the subject of process-resumption order within a monitor. If
several processes are suspended on condition x, and an x. signal () operation

6.7

monitor ResourceAllocator
boolean busy;
condition x;

void acquire(int time) {
if (busy)
x.wait(time) ;
busy = TRUE;

}

void release() {
busy = FALSE;
x.signalQ);

}

initialization code() {
busy = FALSE;
¥

}

Figure 6.20 A monitor to allocate a single resource.

is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution is to use an
FCFS ordering, so that the process that has been waiting the longest is resumed
first. In many circumstances, however, such a 51mp1e scheduhncr scheme is not
adequate. For this purpose, the conditicnz -wrzit construct can be used; it has
the form

x.wait(c);

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of ¢, which is called a suicrity numier, is then stored
with the name of the process thatis suspended. When x.signal () isexecuted,
the process with the smallest priority number is resumed next.

To illustrate this new mechanisin, consider the ResourceAllocator mon-
itor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation of
this resource, specifies the maximum time it plans to use the resource. The mon-
itor allocates the resource to the process that has the shortest time-allocation
request. A process that needs to access the resource in question must observe
the following sequence:

R.acquire(t);
access the resource;

R.release();

where R is an instance of type ResourceAllocator.

252

6.8

Chapter 6 Syncix

Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

© A process might access a resource without first gaining access permission
to the resource.

A process might never release a resource once it has been granted access
to the resource.

~ A process might attempt to release a resource that it never requested.

A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect all the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although this inspection may be possible for a small, static system, it is
not reasonable for a large system or a dynamic system. This access-control
problem can be solved only through the use of additional mechanisms that are
described in Chapter 14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages—such as Erlang —provide some
type of concurrency support using a similar mechanism.

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads APL. We have
chosen these three operating systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the

6.8 Cynchro

ion Huampies 253

JAVA MONITORS

Java provides a monitor-like concurrency mechanism for thread synchro-
nization. Every object in Java has associated with it a single lock. When a
method is declared to be synchronized, calling the method requires owning
the lock for the object. We declare a synchronized method by placing the
synchronized keyword in the method definition. The following defines the
safeMethod() as synchronized, for example:

public class SimpleClass {

public synchronized void safeMethod() {
/* Implementation of safeMethod() */
}
}

Next, assume we create an object instance of SimpleClass, such as:
SimpleClass sc = new SimpleClass();

Invoking the sc.safeMethod() method requires owning the lock on the
object instance sc. If the lock is already owned by another thread, the thread
calling the synchronized method blocks and is placed in the entry set for the
object’s lock. The entry set represents the set of threads waiting for the lock
to become available. If the lock is available when a synchronized method
is called, the calling thread becomes the owner of the object’s lock and can
enter the method. The lock is released when the thread exits the method; a
thread from the entry set is then selected as the new owner of the lock.

Java also provides wait () and notify () methods, which are similar
in function to the wait () and signal() statements for a monitor. Release
1.5 of the Java language provides API support for semaphores, condition
variables, and mutex locks (among other concurrency mechanisms) in the
java.util.concurrent package.

Pthreads API because it is widely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi-
tion variables, semaphores, reader—writer locks, and turnstiles. Solaris imple-
ments semaphores and condition variables essentially as they are presented
in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader—
writer locks, and turnstiles.

254

Chapter 6

tve = protects access to every critical data item. On a
multiprocessor system an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, the spin-waiting method is exceedingly inefficient. For these longer
code segments, condition variables and semaphores are used. If the desired
lock is already held, the thread issues a wait and sleeps. When a thread frees
the lock, it issues a signal to the next sleeping thread in the queue. The extra
cost of putting a thread to sleep and waking it, and of the associated context
switches, is less than the cost of wasting several hundred instructions waiting
in a spinlock.

Reader—writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader—writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
to the data. Reader—writer locks are relatively expensive to implement, so again
they are used only on long sections of code.

Solaris uses turnstlles to order the list of threads waiting to acquire either
an adaptive mutex or a reader—writer lock. A iurnsiiiz is a queue structure
containing threads blocked on a lock. For example it one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object’s lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile for each object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Threads subsequently blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from a list of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol. This means thatif a lower-priority thread currently holds
a lock on which a higher-priority thread is blocked, the thread with the lower
priority will temporarily inherit the priority of the higher-priority thread. Upon
releasing the lock, the thread will revert to its original priority.

6.8 Comoovonizailon el 255
Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.4;
user-level thread-locking mechanisms do not provide this functionality.

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.

6.8.2 Synchronization in Windows XP

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for all interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
“izzeizrer ozzze Using a dispatcher object, threads synchronize according
to several different mechamsms including mutexes, semaphores, events, and
timers. The system protects shared data by requiring a thread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. ===z are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finally, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dlspatcher objects may be in either a signaled state or a nonsignaled state.

sizmz =0 2=tz indicates that an ob]ect is avallable and a thread will not block
when acquumo the object. A =.zzzizm2 22 g2 = indicates that an object is not
available and a thread will block when a’c’temp’clncr to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of a thread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to s1gna1ed
the kernel checks whether any threads are waiting on the object. If so, the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.

256

Chapter 6 Synchronization

kernel moves one thread—or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads
the kernel selects from the waiting queue depends on the type of dispatcher
object for which it is waiting. The kernel will select only one thread from the
waiting queue for a mutex, since a mutex object may be “owned” by only a
single thread. For an event object, the kernel will select all threads that are
waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that is in a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the
front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock.

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 API.

6.8.3 Synchronization in Linux

Prior to Version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted—even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so a task can be preempted when it is running in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader—
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanismis a spinlock, and the kernel is designed so
thatthe spinlockis held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

single processor multiple processors
Disable kernel preemption. Acquire spin lock.
Enable kernel preemption. Release spin lock.

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt._disable() and pre-
empt_enable () —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task in the system has a thread-info structure
containing a counter, preempt_count, to indicate the number of locks being
held by the task. When a lock is acquired, preempt_count is incremented. It
is decremented when a lock is released. If the value of preempt_count for the
task currently running is greater than zero, it is not safe to preempt the kernel,
as this task currently holds a lock. If the count is zero, the kernel can safely be
interrupted (assuming there are no outstanding calls to preempt_disable()).

6.9

6.9 Atomic Transactions 257

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for a longer period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads API provides mutex locks, condition variables, and read-write
locks for thread synchronization. This API is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
locks behave similarly to the locking mechanism described in Section 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads API include spinlocks, but not all
extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

s s oE /—}\r’a
=NsaE CF
[i Rl)

s < — ot
= o LIS

Tar e e ST]

/ o LT

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically —that s, as one uninterruptible unit. If two critical sections
are instead executed concurrently, the result is equivalent to their sequential
execution in some unknown order. Although this property is useful in many
application domains, in many cases we would like to make sure that a critical
section forms a single logical unit of work that either is performed in its entirety
or is not performed at all. An example is funds transfer, in which one account
is debited and another is credited. Clearly, it is essential for data consistency
either that both the credit and debit occur or that neither occurs.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with datzbese systems. Recently, there has been an upsurge of
mnterest in using database—systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc techniques used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database techniques and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It is this
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logical
function is called a transaction. A major issue in processing tr ansac’uons is the

258

Chapter 6 Zncivorizaticn

preservation of atomicity despite the possibility of failures within the computer
systemm.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has

TRANSACTIONAL MEMORY

With the emergence of multicore systems has come increased pressure to
develop multithreaded applications that take advantage of multiple process-
ing cores. However, multithreaded applications present an increased risk
of race conditions and deadlocks. Traditionally, techniques such as locks,
semaphores and monitors have been used to address these issues. How-

ever, rznezstions. moznory provides an alternative strategy for developing
thread-safe concurrent apphcat1ons
A iz mprzootior is a sequence of memory read-write operations

that are atomic. If all operatlons in a transaction are completed, the memory
transaction is committed; otherwise, the operations must be aborted and
rolled back. The benefits of transactional memory can be obtained through
features added to a programming language.

Consider an example. Suppose we have a function update () that
modifies shared data. Traditionally, this function would be written using
locks such as the following:

update () {
acquire();
/* modify shared data */
release();

b

However, using synchronization mechanisms such as locks and semaphores
involves many potential problems, including deadlocks. Additionally, as the
number of threads increases, traditional locking does not scale well.

As an alternative to traditional methods, new features that take advantage
of transactional memory can be added to a programming language. In our
example, suppose we add the construct atomic{S}, which ensures that
the operations in S execute as a transaction. This allows us to rewrite the
update () method as follows:

update () {
atomic {
/* modify shared data */
b

}

Continued on following page.

TRANSACTIONAL MEMORY (Continued)

The advantage of using such a mechanism rather than locks is that the
transactional memory system-—not the developer—is responsible for guar-
anteeing atomicity. Additionally, the system can identity which statements in
atomic blocks can be executed concurrently, such as concurrent read access to
a shared variable. It is, of course, possible for a programmer to identify these
situations and use reader—writer locks, but the task becomes increasingly
difficult as the number of threads within an application grows.

Transactional memory can be implemented in either software or hard-
ware. Software transactional memory (STM), as the name suggests, imple-
ments transactional memory exclusively in software—no special hardware
is needed. STM works by inserting instrumentation code inside transaction
blocks. The code is inserted by a compiler and manages each transaction by
examining where statements may run concurrently and where specific low-
level locking is required. Hardware transactional memory (small HTM) uses
hardware cache hierarchies and cache coherency protocols to manage and
resolve conflicts involving shared data residing in separate processors caches.
HTM requires no special code instrumentation and thus has less overhead
than STM. However, HTM does require that existing cache hierarchies and
cache coherency protocols be modified to support transactional memory.

Transactional memory has existed for several years without widespread
implementation. However, the growth of multicore systems and the asso-
ciated emphasis on concurrent programming have prompted a significant
amount of research in this area on the part of both academics and hardware
vendors, including Intel and Sun Microsystems.

ended its normal execution due to some logical error or a system failure.
If a terminated transaction has completed its execution successfully, it is
2; otherwise, itis 2 2.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it was just before the transaction started executing. We
say that such a transaction has been roilzd ack Itis part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

¢ Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

260

Chapter 6 Syociironi

¢ Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but less reliable
than magnetic tapes. Both disks and tapes, however, are subject to failure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

¢ Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannotbe guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing all the modifications made by the transaction to the various data it
accesses. The most w1de1y used method for achieving this form of recording

gzingz. Here, the system maintains, on stable storage, a data
structure called the .cg. Bach log record describes a single opelatlon of a
transaction write and has the followmg fields:

(@]

Transaction name. The unique name of the transaction that performed the
write operation

Data item name. The unique name of the data item written
Old value. The value of the data item prior to the write operation
2 New value. The value that the data item will have after the write

Other special log records exist to record significant events during transac-
tion processing, such as the start of a transaction and the comunit or abort of a
transaction.

Before a transaction T; starts its execution, the record < T; starts> is
written to the log. During its execution, any write operation by T; is preceded
by the writing of the appropriate new record to the log. When T; commits, the
record < T; commits> is written to the log.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot allow the actual
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themselves and for the log recording the changes. In cases

6.9 Alomic Tvansactions 261

where the data are extremely important and fast failure recovery is necessary,
however, the functionality is worth the price.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

¢ undo(T;), which restores the value of all data updated by transaction T; to
the old values

¢ redo(T;), which sets the value of all data updated by transaction T; to the
new values

The set of data updated by T; and the appropriate old and new values can be
found in the log. Note that the undo and redo operations must be idempotent
(thatis, multiple executions must have the same result as does one execution) to
guarantee correct behavior even if a failure occurs during the recovery process.

If a transaction T; aborts, then we can restore the state of the data that
it has updated by simply executing undo(T;). If a system failure occurs, we
restore the state of all updated data | by consulting the log to determine which
transactions need to be redone and which need to be undone. This classification
of transactions is accomplished as follows:

@ Transaction T; needs to be undone if the log contains the < T; starts>
record but does not contain the < T; commits> record.

¢ Transaction T; needs to be redone if the log contains both the < T; starts>
and the < T; commits> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine which
transactions need to be redone and which need to be undone. In principle, we
need to search the entire log to make these determinations. There are two major
drawbacks to this approach:

Z. The searching process is time consuming.

Z. Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of checic-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the followmcr
sequence of actions to take place:

i. Output all log records currently residing in volatile storage (usually main
memory) onto stable storage.

2. Output all modified data residing in volatile storage to the stable storage.

13

Output a log record <checkpoint> onto stable storage.

262

Chapter6 =

The presence of a <checkpoint> record in the log allows the system
to streamline its recovery procedure. Consider a transaction T; that committed
prior to the checkpoint. The < T; commits> record appears in the log before the
<checkpoint> record. Any modifications made by T; must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itself. Thus, at recovery time, there is no need to perform a redo operation
on T;.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction T; that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record and then finding the subsequent
< T; start> record.

Once transaction I; has beenidentified, the redo and undo operations need
be applied only to transaction I; and all transactions T; that started executing
after transaction T;. We'll call these transactions set T. The remainder of the log
can be ignored. The recovery operations that are required are as follows:

@

For all transactions Ij in T for which the record < Ty commits> appears in
the log, execute redo(Tx).

&

For all transactions T in T that have no < T; commits> record in the log,
execute undo(1).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actlons are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within
a critical section. That is, all transactions share a common semaphore mutex,
which is initialized to 1. When a transaction starts executing, its first action is to
execute wait(mutex). After the transaction either commits or aborts, it executes
signal(mutex).

Although this scheme ensures the atomicity of all concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can allow transactions to overlap their execution while maintaining
serializability. A number of different concurrency-control algorithms ensure
serializability, and we describe these algorithms next.

6.9.4.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, Ty and T;. Suppose that these transactions are executed
atomically in the order Tj followed by Ti. This execution sequence, which is
called a schedule, is represented in Figure 6.22. In schedule 1 of Figure 6.22, the
sequence of instruction steps is in chronological order from top to bottom, with
instructions of Ty appearing in the left column and instructions of T; appearing
in the right column.

Ty 5

read(A)

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

Figure 6.22 Schedule 1: A serial schedule in which T is followed by T;.

A schedule in which each transaction is executed atomically is called
a szrie. soo=oiiz. A serial schedule consists of a sequence of instructions
from various transactlons wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of n transactions, there exist n!
different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result-
ing schedule is no longer serial. A cmzerizl zczc 2 does not necessarily
1mply an incorrect execution (that is, an execution that is not equivalent to one
represented by a serial schedule) To see that this is the case, we need to define
the notion of zzx.= o i

Consider a schedule S in wh1ch there are two consecutive operations O;
and O; of transactions T; and T}, respectively. We say that O; and O; conflict if
they access the same data item and at least one of them is a write operation.
To illustrate the concept of conflicting operations, we consider the nonserial
schedule 2 of Figure 6.23. The write(A) operation of Ty conflicts with the
read(A) operation of T;. However, the write(A) operation of T; does not
conflict with the read(B) operation of Ty, because the two operations access
different data items.

Ty T
read(A)
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Figure 6.23 Schedule 2: A concurrent serializable schedule.

264

Chapter 6 Syn

Let O; and O; be consecutive operations of a schedule S. If O; and O; are
operations of different transactions and O; and O; do not conflict, then we can
swap the order of O; and O; to produce a new schedule S". We expect S to be
equivalent to ', as all operations appear in the same order in both schedules,
except for O; and O;, whose order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.23. As the write(A) operation of T; does not conflict with the read(B)
operation of Ty, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final system state. Continuing with this procedure of swapping
nonconflicting operations, we get:

© Swap the read(B) operation of Ty with the read(A) operation of T3.

¢ Swap the write(B) operation of Ty with the write(A) operation of Ti.

€]

Swap the write(B) operation of Ty with the read(A) operation of T:.

The final result of these swaps is schedule 1 in Figure 6.22, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. This result implies that, regardless of the initial system state, schedule
2 will produce the same final state as will some serial schedule.

If a schedule S can be transformed into a serial schedule S’ by a series of
swaps of nonconflicting operations, we say that a schedule 5 is confict serfal-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.9.4.2 Locking Protocol

One way to ensure serializability is to associate a lock with each data item and
to require that each transaction follow a locking wrctocsl that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:

© Shared. If a transaction T; has obtained a shared-mode lock (denoted by
S) on data item Q, then T; can read this item but cannot write Q.

o Exclusive. If a transaction T; has obtained an exclusive-mode lock (denoted
by X) on data item (), then T; can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access data item Q, transaction T; must first lock Q in the appropriate
mode. If Q) is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then T; may have to wait. More specifically, suppose that T; requests
an exclusive lock on Q. In this case, T; must wait until the lock on Q is released.
If T; requests a shared lock on Q, then T; must wait if Q is locked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers—writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.

6.9 Atornic Tramsaciions 265

Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-pha
This protocol requires that each transaction issue lock and unlock requests in
two phases:

se locking protocol.
BT

© Growing phase. A transaction may obtain locks but may not release any
locks.

¢ Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks
as needed. Once the transaction releases a lock, it enters the shrinking phase,
and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.14). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
To improve performance over two-phase locking, we need either to have
additional information about the transactions or to impose some structure
or ordering on the set of data.

6.9.4.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of
conflicting transactions is determined at execution time. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a fimestamp ordering scheme.

With each transaction T; in the system, we associate a unique fixed
timestamp, denoted by TS(T;). This timestamp is assigned by the system
before the transaction T; starts execution. If a transaction T; has been assigned
timestamp TS(T;), and later a new transaction T; enters the system, then TS(T;)
< TS(T)). There are two simple methods for implementing this scheme:

o Use the value of the system clock as the timestamp; that is, a transaction’s
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

@

Use a logical counter as the timestamp; that is, a transaction’s timestamp
is equal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T;) < TS(T;), then the system must ensure that the schedule
produced is equivalent to a serial schedule in which transaction T; appears
before transaction T;.

To implement this scheme, we associate with each data item Q two
timestamyp values:

266 Chapter 6

W-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed write(Q).

R-timestamp(Q) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or write(Q) instruc-
tion is executed.

The timestamp ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

Suppose that transaction T; issues read(Q):

o If TS(T;) < W-timestamp(), then T; needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

o If TS(T;) = W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T).

Suppose that transaction T; issues write(Q):

o If TS(T;) < R-timestamp(Q), then the value of Q that T; is producing
was needed previously and T; assumed that this value would never be
produced. Hence, the write operation is rejected, and T; is rolled back.

o If TS(T;) < W-timestamp(Q), then T; is attempting to write an obsolete
value of Q. Hence, this write operation is rejected, and T; is rolled back.

o Otherwise, the write operation is executed.

A transaction T; thatis rolled back as a result of either a read or write operation
is assigned a new timestamp and is restarted.

Toillustrate this protocol, consider schedule 3 in Figure 6.24, which includes
transactions T, and T;. We assume that a transaction is assigned a timestamp
immediately before its first instruction. Thus, in schedule 3, TS(Ty) < TS(I3),
and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

T T3
read(B)
read(B)
write(B)
read(A)
read(A)
write(A)

Figure 6.24 Schedule 3: A schedule possible under the timestamp protocol.

6.10

I g oy B o
[N i

v
=

ciges 267

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protocol also ensures freedom from deadlock, because no transaction
ever waits.

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided to ensure that a critical section of code is used
by only one process or thread at a time. Typically, computer hardware
provides several operations that ensure mutual exclusion. However, such
hardware-based solutions are too complicated for most developers to use.
Semaphores overcome this obstacle. Semaphores can be used to solve various
synchronization problems and can be implemented efficiently, especially if
hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers—writers problem, and the dining-philosophers problem) are impor-
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads API provides support for mutexes and condition variables.

A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If a system crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching thelog after a system
failure has occurred, we can use a checkpoint scheme.

To ensure serializability when the execution of several transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure serializability by delaying an operation or aborting the trans-
action that issued the operation. The most common ones are locking protocols
and timestamp ordering schemes.

6.1 The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, Py and
Py, share the following variables:

boolean flagl2]; /* initially false */
int turn;

268

Chapter 6 Sync

6.2

6.3

6.4

6.5

do {
flagli]l = TRUE;

while (flagljl) {
if (turn == j) {
flag[i] = false;
while (turn == j)
; // do nothing
flag[i] = TRUE;
}
}

// critical section

turn = j;
flaglil = FALSE;

// remainder section
} while (TRUE);

Figure 6.25 The structure of process P, in Dekker’s algorithm.

The structure of process P; (i == 0 or 1) is shown in Figure 6.25; the other
process is P; (j == 1 or 0). Prove that the algorithm satisfies all three
requirements for the critical-section problem.

Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want_in, in_cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process P; is shown in
Figure 6.26. Prove that the algorithm satisfies all three requirements for
the critical-section problem.

Write a monitor that implements an alarm clock that enables a calling
program to delay itself for a specified number of time units (ticks).
You may assume the existence of a real hardware clock that invokes
a procedure tick in your monitor at regular intervals.

A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of all unique

6.6

(R 269

do {
while (TRUE) {
flagli] = want_in;
j = turn;

while (j != i) {
if (flagljl '= idle) {
j = turm;
else
j =G+ 1 % n;
}

flagli] = in_cs;
3=0

while ((j < n) && (j == 1 || flaglj] != in.cs))
jt+;

if ((7 > n) & (turn == i || flaglturn] == idle))
break;

// critical section
j = (turn + 1) % n;

while (flagl[j] == idle)
j={G+ 1 %n;

turn = j;
flagli] = idle;

// remainder section
} while (TRUE);

Figure 6.26 The structure of process F; in Eisenberg and McGuire’s algorithm.

numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

The decrease_count() function in the previous exercise currently
returns O if sufficient resources are available and —1 otherwise. This
leads to awkward programming for a process that wishes to obtain a
number of resources:

while (decrease_count(count) == -1)

H

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count () function suspends

270

Chapter 6 Syn

6.7

6.8

6.9

6.10

6.11

6.12

6.13

the process until sufficient resources are available. This will allow a
process to invoke decrease_count () by simply calling

decrease_count (count) ;

The process will return from this function call only when sufficient
resources are available.

Exercise 4.12 requires the parent thread to wait for the child thread to
finish its execution before printing out the computed values. If we let
the parent thread access the Fibonacci numbers as soon as they have
been computed by the child thread — rather than waiting for the child
thread to terminate — Explain what changes would be necessary to the
solution for this exercise? Implement your modified solution.

In Section 6.4, we mentioned that disabling interrupts frequently can
affect the system’s clock. Explain why this can occur and how such
effects can be minimized.

Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

Why do Solaris, Linux, and Windows XP use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

Show that, if the wait () and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.

Show how to implement the wait () and signal() semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

Suppose we replace the wait () and signal() operations of moni-
tors with a single construct await (B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.

a. Write a monitor using this scheme to implement the readers—
writers problem.

b. Explain why, in general, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that it
can be implemented efficiently? (Hint: Restrict the generality of B;
see Kessels [1977].)

6.14
6.15

6.16
6.17

6.18

6.19

6.20

271

Show that the two-phase locking protocol ensures conflict serializability.

How does the signal () operation associated with monitors differ from
the corresponding operation defined for semaphores?

Describe how volatile, nonvolatile, and stable storage differ in cost.

Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

Consider a system consisting of processes P1, P», ..., Py, each of which
has a unique priority number. Write a monitor that allocates three
identical line printers to these processes, using the priority numbers
for deciding the order of allocation.

Describe two kernel data structures in which race conditions are possible.
Be sure to include a description of how a race condition can occur.

Assume that a finite number of resources of a single resource type must
be managed. Processes may ask for a number of these resources and
—once finished —will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently. When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX_RESOURCES 5
int available_resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease_count () function:

/* decrease available_resources by count resources */
/% return 0 if sufficient resources available, */
/* otherwise return -1 */
int decrease_count(int count) {
if (available_resources < count)
return -1;
else {
available_resources —= count;

return O;

272

Chapter 6 “yocoronizaiicn

6.21

6.22

6.23

6.24

6.25

When a process wants to return a number of resources, it calls the
increase_count () function:

/* increase available resources by count */
int increase_count(int count) {
available_resources += count;

return O;

}

The preceding program segment produces a race condition. Do the
following:

Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphore, fix the race condition. It is ok to modify the
decrease_count () function so that the calling process is blocked
until sufficient resources are available.

Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

The Cigarette-Smokers Problem. Consider a system with three smoker
processes and one agent process. Each smoker continuously rolls a
cigarette and then smokes it. But to roll and smoke a cigarette, the
smoker needs three ingredients: tobacco, paper, and matches. One of
the smoker processes has paper, another has tobacco, and the third has
matches. The agent has an infinite supply of all three materials. The
agent places two of the ingredients on the table. The smoker who has
the remaining ingredient then makes and smokes a cigarette, signaling
the agent on completion. The agent then puts out another two of the three
ingredients, and the cycle repeats. Write a program to synchronize the
agent and the smokers using Java synchronization.

Describe how the Swap() instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

Wmdows Vista p1 ovides a new lightweight synchronization tool called

: e locks. Whereas most implementations of reader-
e1ther readers or writers, or perhaps order waiting
threads using a FIFO policy, slim reader-writer locks favor ne1ther
readers nor Writers, nor are waiting threads ordered in a FIFO queue.
Explain the benefits of providing such a synchronization tool.

What are the implications of assigning a new timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

sercises 273

Discuss the tradeoff between fairness and throughput of operations
in the readers—writers problem. Propose a method for solving the
readers—writers problem without causing starvation.

When a signal is performed on a condition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with these two different ways in which signaling can be performed?

What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary?

Explain the purpose of the checkpoint mechanism. How often should
checkpoints be performed? Describe how the frequency of checkpoints
affects:

> System performance when no failure occurs

> The time it takes to recover from a system crash

The time it takes to recover from a disk crash

Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.32 mainly suitable for small portions.

a. Explain why this is true.

b. Design a new scheme that is suitable for larger portions.

Race conditions are possible in many computer systems. Consider
a banking system with two functions: deposit (amount) and with-
draw (amount). These two functions are passed the amount that is to
be deposited or withdrawn from a bank account. Assume a shared
bank account exists between a husband and wife and concurrently the
husband calls the withdraw() function and the wife calls deposit ().
Describe how a race condition is possible and what might be done to
prevent the race condition from occurring.

€3]

274 Chapter 6

6.35 Suppose the signal() statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified in this situation.

6.36 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

6.37 Producer-Consumer Problem

In Section 6.6.1, we had presented a semaphore-based solution to the
producer—consumer problem using a bounded buffer. In this project,
we will design a programming solution to the bounded-buffer problem
using the producer and consumer processes shown in Figures 6.10 and
6.11. The solution presented in Section 6.6.1 uses three semaphores:
empty and full, which count the number of empty and full slots in the
buffer, and mutex, which is a binary (or mutual-exclusion) semaphore
that protects the actual insertion or removal of items in the buffer. For
this project, standard counting semaphores will be used for empty and
full, and a mutex lock, rather than a binary semaphore, will be used
to represent mutex. The producer and consumer—running as separate
threads—will move items to and from a buffer thatis synchronized with
these empty, full, and mutex structures. You can solve this problem
using either Pthreads or the Win32 APL

The Buffer

Internally, the buffer will consist of a fixed-size array of type
buffer_item (which will be defined using a typedef). The array of
buffer item objects will be manipulated as a circular queue. The
definition of buffer_item, along with the size of the buffer, can be
stored in a header file such as the following:

/* buffer.h */
typedef int buffer_item;
#define BUFFER_SIZE 5

The buffer will be manipulated with two functions, insert_item() and
remove_item(), whichare called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears in Figure 6.27.

ojects 275
#include "buffer.h"

/* the buffer =*/
buffer_item buffer [BUFFER_SIZE];

int insert_item(buffer_item item) {
/* insert item into buffer
return O if successful, otherwise
return -1 indicating an error condition */

}

int remove_item(buffer_item *item) {
/* remove an object from buffer
placing it in item
return O if successful, otherwise
return -1 indicating an error condition */

Figure 6.27 A skeleton program.

The insert_item() and remove_item() functions will synchronize
the producer and consumer using the algorithms outlined in Figures
6.10 and 6.11. The buffer will also require an initialization function that
initializes the mutual-exclusion object mutex along with the empty and
full semaphores.

The main() function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer
and consumer threads, the main() function will sleep for a period of
time and, upon awakening, will terminate the application. The main ()
function will be passed three parameters on the command line:

a. How long to sleep before terminating
b. The number of producer threads
c. The number of consumer threads

A skeleton for this function appears in Figure 6.28.

#include "buffer.h"

int main(int argc, char xargv[]) {
/* 1. Get command line arguments argv[1],argv[2],argv(3] =*/

/* 2. Initialize buffer */

/* 3. Create producer thread(s) */
/* 4. Create consumer thread(s) */
/* 5. Sleep */

/* 6. Exit */

Figure 6.28 A skeleton program.

276

Chapter6 Cocozcninaiion

Producer and Consumer Threads

The producer thread will alternate between sleeping for a random period
of time and inserting a random integer into the buffer. Random numbers
will be produced using the rand () function, which produces random
integers between 0 and RAND MAX. The consumer will also sleep for a
random period of time and, upon awakening, will attempt to remove an
item from the buffer. An outline of the producer and consumer threads
appears in Figure 6.29.

In the following sections, we first cover details specific to Pthreads
and then describe details of the Win32 API.

Pthreads Thread Creation

Creating threads using the Pthreads APIis discussed in Chapter 4. Please
refer to that chapter for specific instructions regarding creation of the
producer and consumer using Pthreads.

#include <stdlib.h> /* required for rand() */
#include "buffer.h"

void *producer(void *param) {
buffer_item item;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
/* generate a random number */
item = rand();
if (insert_item(item))
fprintf ("report error condition");
else
printf ("producer produced %d\n",item);

}

void *consumer(void *param) {
buffer_item item;

while (TRUE) {
/* sleep for a random period of time */
sleep(...);
if (remove_item(&item))
fprintf ("report error condition");
else
printf ("consumer consumed %d\n",item);

Figure 6.29 An outline of the producer and consumer threads.

crniaci 277

#include <pthread.h>
pthread mutex_t mutex;

/* create the mutex lock */
pthread mutex_init(&mutex,NULL) ;

/* acquire the mutex lock */
pthread mutex lock(&mutex) ;

/*¥% critical section **%/

/* release the mutex lock */
pthread mutex unlock (&mutex) ;

Figure 6.30 Code sample.

Pthreads Mutex Locks

The code sample depicted in Figure 6.30 illustrates how mutex locks
available in the Pthread API can be used to protect a critical section.

Pthreads uses the pthread mutex_t data type for mutex locks.
A mutex is created with the pthread mutex_init(&mutex,NULL)
function, with the first parameter being a pointer to the mutex.
By passing NULL as a second parameter, we initialize the mutex to
its default attributes. The mutex is acquired and released with the
pthread mutex_lock() and pthread mutex unlock() functions.
If the mutex lock is unavailable when pthread mutex lock() is
invoked, the calling thread is blocked until the owner invokes
pthread mutex_unlock (). All mutex functions return a value of 0 with
correct operation; if an error occurs, these functions return a nonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores—named and unnamed. For
this project, we use unnamed semaphores. The code below illustrates
how a semaphore is created:

#include <semaphore.h>
sem.t sem;

/* Create the semaphore and initialize it to 5 */
sem_init(&sem, 0, 5);

The sem_init () creates and initializes a semaphore. This function is
passed three parameters:

a. A pointer to the semaphore
b. Aflagindicating the level of sharing

c. The semaphore’s initial value

278

Chapter 6 Sy

vnchronization
#include <semaphore.h>
sem_t mutex;

/* create the semaphore */
sem_init (&mutex, 0, 1);

/* acquire the semaphore */
sem_wait (&mutex) ;

/*x* critical section **x/

/* release the semaphore */
sem_post (&mutex) ;

Figure 6.31 AAAS5.

In this example, by passing the flag 0, we are indicating that this
semaphore can only be shared by threads belonging to the same
process that created the semaphore. A nonzero value would allow other
processes to access the semaphore as well. In this example, we initialize
the semaphore to the value 5.

In Section 6.5, we described the classical wait() and signal()
semaphore operations. Pthreads names the wait() and signal()
operations sem_wait () and sem_post (), respectively. The code example
shown in Figure 6.31 creates a binary semaphore mutex with an initial
value of 1 and illustrates its use in protecting a critical section.

Win32

Details concerning thread creation using the Win32 API are available in
Chapter 4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section
6.8.2. The following illustrates how to create a mutex lock using the
CreateMutex () function:

#include <windows.h>

HANDLE Mutex;
Mutex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By
setting this attribute to NULL, we are disallowing any children of the
process creating this mutex lock to inherit the handle of the mutex.
The second parameter indicates whether the creator of the mutex is the
initial owner of the mutex lock. Passing a value of FALSE indicates that
the thread creating the mutex is not the initial owner; we shall soon see
how mutex locks are acquired. The third parameter allows naming of

279

the mutex. However, because we provide a value of NULL, we do not
name the mutex. If successful, CreateMutex () returns a HANDLE to the
mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either
signaled or nonsignaled. A signaled object is available for ownership;
once a dispatcher object (such as a mutex lock) is acquired, it moves to
the nonsignaled state. When the object is released, it returns to signaled.
Mutex locks are acquired by invoking the WaitForSingleObject ()
function, passing the function the HANDLE to the lock and a flag indicating
how long to wait. The following code demonstrates how the mutex lock
created above can be acquired:

WaitForSingleObject (Mutex, INFINITE);

The parameter value INFINITE indicates that we will wait an infinite
amount of time for the lock to become available. Other values could
be used that would allow the calling thread to time out if the lock
did not become available within a specified time. If the lock is in a
signaled state, WaitForSingleObject () returns immediately, and the
lock becomes nonsignaled. A lock is released (moves to the signaled
state) by invoking ReleaseMutex (), such as:

ReleaseMutex (Mutex) ;

Win32 Semaphores

Semaphores in the Win32 API are also dispatcher objects and thus use
the same signaling mechanism as mutex locks. Semaphores are created
as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore(NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The sec-
ond and third parameters indicate the initial value and maximum value
of the semaphore. In this instance, the initial value of the semaphoreis 1,
and its maximum value is 5. If successful, CreateSemaphore () returns
a HANDLE to the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject O
function as mutex locks. We acquire the semaphore Sem created in this
example by using the statement:

WaitForSingleObject (Semaphore, INFINITE);

If the value of the semaphore is > 0, the semaphore is in the signaled
state and thus is acquired by the calling thread. Otherwise, the calling
thread blocks indefinitely—as we are specifying INFINITE—until the
semaphore becomes signaled.

280 Chapter 6 Zyrichronization

J

The equivalent of the signal () operation on Win32 semaphores is the
ReleaseSemaphore () function. This function is passed three parame-
ters:

a. The HANDLE of the semaphore
b. The amount by which to increase the value of the semaphore
c. A pointer to the previous value of the semaphore

We can increase Sem by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutex() return nonzero if
successful and zero otherwise.

The mutual-exclusion problem was first discussed in a classic paper by Dijkstra
[1965a]. Dekker’s algorithm (Exercise 6.1)—the first correct software solution
to the two-process mutual-exclusion problem—was developed by the Dutch
mathematician T. Dekker. This algorithm also was discussed by Dijkstra
[1965a]. A simpler solution to the two-process mutual-exclusion problem has
since been presented by Peterson [1981] (Figure 6.2).

Dijkstra [1965b] presented the first solution to the mutual-exclusion prob-
lem for n processes. This solution, however, does not have an upper bound on
the amount of time a process must wait before it is allowed to enter the critical
section. Knuth [1966] presented the first algorithm with a bound; his bound
was 2" turns. A refinement of Knuth'’s algorithm by deBruijn [1967] reduced the
waiting time to n* turns, after which Eisenberg and McGuire [1972] succeeded
in reducing the time to the lower bound of n—1 turns. Another algorithm
that also requires n—1 turns but is easier to program and to understand is
the bakery algorithm, which was developed by Lamport [1974]. Burns [1978]
developed the hardware-solution algorithm that satisfies the bounded-waiting
requirement.

General discussions concerning the mutual-exclusion problem were
offered by Lamport [1986] and Lamport [1991]. A collection of algorithms for
mutual exclusion was given by Raynal [1986].

The semaphore concept was suggested by Dijkstra [1965a]. Patil [1971]
examined the question of whether semaphores can solve all possible syn-
chronization problems. Parnas [1975] discussed some of the flaws in Patil’s
arguments. Kosaraju [1973] followed up on Patil’s work to produce a problem
that cannot be solved by wait() and signal() operations. Lipton [1974]
discussed the limitations of various synchronization primitives.

The classic process-coordination problems that we have described are
paradigms for a large class of concurrency-control problems. The bounded-
buffer problem, the dining-philosophers problem, and the sleeping-barber
problem (Exercise 6.36) were suggested by Dijkstra [1965a] and Dijkstra [1971].
The cigarette-smokers problem (Exercise 6.22 was developed by Patil [1971].
The readers—writers problem was suggested by Courtois et al. [1971]. The

raiical Motes 281

G

issue of concurrent reading and writing was discussed by Lamport [1977].
The problem of synchronization of independent processes was discussed by
Lamport [1976].

The critical-region concept was suggested by Hoare [1972] and by Brinch-
Hansen [1972]. The monitor concept was developed by Brinch-Hansen [1973].
A complete description of the monitor was given by Hoare [1974]. Kessels
[1977] proposed an extension to the monitor to allow automatic signaling.
Experience obtained from the use of monitors in concurrent programs was
discussed by Lampson and Redell [1979]. They also examined the priority
inversion problem. General discussions concerning concurrent programming
were offered by Ben-Ari [1990] and Birrell [1989].

Optimizing the performance of locking primitives has been discussed in
many works, such as Lamport [1987], Mellor-Crummey and Scott [1991], and
Anderson [1990]. The use of shared objects that do not require the use of critical
sections was discussed in Herlihy [1993], Bershad [1993], and Kopetz and
Reisinger [1993]. Novel hardware instructions and their utility inimplementing
synchronization primitives have been described in works such as Culler et al.
[1998], Goodman et al. [1989], Barnes [1993], and Herlihy and Moss [1993].

Some details of the locking mechanisms used in Solaris were presented
in Mauro and McDougall [2007]. Note that the locking mechanisms used by
the kernel are implemented for user-level threads as well, so the same types
of locks are available inside and outside the kernel. Details of Windows 2000
synchronization can be found in Solomon and Russinovich [2000]. Goetz et al.
[2006] presents a detailed discussion of concurrent programming in Java as
well as the java.util.concurrent package.

The write-ahead log scheme was first introduced in System R by Gray et al.
[1981]. The concept of serializability was formulated by Eswaran et al. [1976] in
connection with their work on concurrency control for System R. The two-phase
locking protocol was introduced by Eswaran et al. [1976]. The timestamp-
based concurrency-control scheme was provided by Reed [1983]. Various
timestamp-based concurrency-control algorithms were explained by Bernstein
and Goodman [1980]. Adl-Tabatabai et al. [2007] discusses transactional
memory.

71

CHAPTER

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources; if the resources are
not available at that time, the process enters a waiting state. Sometimes, a
waiting process is never again able to change state, because the resources it
has requested are held by other waiting processes. This situation is called

cezclock. We discussed this issue briefly in Chapter 6 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: “When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that an operating system can use
to prevent or deal with deadlocks. Although some applications can identify
programs that may deadlock, operating systems typically do not provide
deadlock-prevention facilities, and it remains the responsibility of program-
mers to ensure that they design deadlock-free programs. Deadlock problems
can only become more common, given current trends, including larger num-
bers of processes, multithreaded programs, many more resources within a
system, and an emphasis on long-lived file and database servers rather than
batch systems.

= To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks.

= To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into several

283

284

Chapter 7 “eoozocn

types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and I/0O devices (such as printers and DVD drives) are examples
of resource types. If a system has two CPUs, then the resource type CPU has
two instances. Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
notidentical, and the resource type classes have not been defined properly. For
example, a system may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may request as many resources as it requires
to carry out its designated task. Obviously, the number of resources requested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

Z. Request. The process requests the resource. If the request cannot be
granted immediately (for example, if the resource is being used by another
process), then the requesting process must wait until it can acquire the
resource.

2. Use. The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

<. Release. The process releases the resource.

The request and release of resources are system calls, as explained in
Chapter 2. Examples are the request () and release() device, open() and
close() file, and allocate () and free() memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wait () and signal () operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel-
managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource.
A system table records whether each resource is free or allocated; for each
resource that is allocated, the table also records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlocked state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the IPC facilities discussed in Chapter 3).

To illustrate a deadlocked state, consider a system with three CD RW drives.
Suppose each of three processes holds one of these CD RW drives. If each process

7.2

7.2 e o hoetmoesiinobio 285

now requests another drive, the three processes will be in a deadlocked state.
Each is waiting for the event “CD RW is released,” which can be caused only
by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
asystem with one printer and one DVD drive. Suppose that process P; is holding
the DVD and process P; is holding the printer. If P; requests the printer and P;
requests the DVD drive, a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi-
dates for deadlock because multiple threads can compete for shared resources.

In a deadlock, processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we look more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

~. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another

DEADLOCK WITH MUTEX LOCKS

Let’s see how deadlock can occur in a multithreaded Pthread program
using mutex locks. The pthread mutex.init() function initializes
an unlocked mutex. Mutex locks are acquired and released using
pthread mutex_lock() and pthread mutex_unlock(), respec-
tively. If a thread attempts to acquire a locked mutex, the call to
pthread mutex_lock() blocks the thread until the owner of the mutex
lock invokes pthread mutex_unlock().
Two mutex locks are created in the following code example:

/* Create and initialize the mutex locks */
pthread mutex_t first_mutex;
pthread mutex_t second mutex;

pthread mutex_init(&first mutex,NULL) ;
pthread mutex_init(&second mutex,NULL) ;

Next, two threads—thread_one and thread_two-—are created, and both
these threads have access to both mutex locks. thread_one and thread_two
run in the functions do_work_one() and do_work_two(), respectively, as
shown in Figure 7.1.

286 Chapter 7 Deadiocks
DEADLOCK WITH MUTEX LOCKS (Continued)

/* thread_one rums in this function */
void *do_work_omne(void *param)
{
pthread mutex_lock(&first_mutex);
pthread mutex_lock(&second mutex) ;
/**
* Do some work
*/
pthread mutex_unlock(&second mutex);
pthread mutex unlock (&first mutex) ;

pthread_exit (0);

}

/* thread_two runs in this function */
void *do_work_two(void *param)
{
pthread mutex lock(&second_mutex) ;
pthread mutex _lock(&first mutex) ;
/xk
* Do some work
*/
pthread mutex unlock (&first mutex) ;
pthread mutex_unlock(&second.mutex) ;

pthread_exit (0) ;

Figure 7.1 Deadlock example.

In this example, thread_one attempts to acquire the mutex locks in the
order (1) first.mutex, (2) second.mutex, while thread_two attempts to
acquire the mutex locks in the order (1) secondmutex, (2) first_mutex.
Deadlock is possible if thread_one acquires first _mutex while thread_two
aacquites second_mutex.

Note that, even though deadlock is possible, it will not occur if thread_one
is able to acquire and release the mutex locks for first mutex and sec-
ond.mutex before thread_two attempts to acquire the locks. This example
illustrates a problem with handling deadlocks: it is difficult to identify and
test for deadlocks that may occur only under certain circumstances.

process requests that resource, the requesting process must be delayed
until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

287

Z. No preemption. Resources cannot be preempted; that is, a resource can
be released only voluntarily by the process holding it, after that process
has completed its task.

4. Circular wait. A set {Py, P, ..., P,} of waiting processes must exist such
that Py is waiting for a resource held by Py, P; is waiting for a resource
held by P, ..., P,-1 is waiting for a resource held by P, and P, is waiting
for a resource held by F.

We emphasize that all four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately.

7.2.2 Resource-Allocation Graph

Deadlocks can be descnbed more p1ec1sely in terms of a directed graph called
a system resource-allocation greph. This graph consists of a set of vertices V
and aset of edges E. The set of vertices V is partitioned into two different types
ofnodes: P = { P, P,, ..., P,}, the set consisting of all the active processes in the
system, and R = {Ry, Ry, ..., Ry}, the set consisting of all resource types in the
system.

A directed edge from process P; to resource type R; is denoted by P; — R;;
it signifies that process P; has requested an instance of resource type R; and
is currently waiting for that resource. A directed edge from resource type R;
to process P; is denoted by R; — P;; it signifies that an instance of resource
type R; has been allocated to process P;. A directed edge P; — R;is called a
2 .,;: ecge; adirected edge R; — P is called an zssignment c;;“.

Pictorially, we replesent each process P; as a circle and each resource type
R; as a rectangle. Since resource type R; may have more than one instance, we
represent each such instance as a dot Within the rectangle. Note that a request
edge points to only the rectangle R;, whereas an assignment edge must also
designate one of the dots in the rectangle.

When process P; requests an instance of resource type R;, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

¢ Thesets P R, and E:
o P={P;, P, P53}
o R={Ry, Ry, R3, Ry}
oE={Pi— R,P—> R3, Ry > P, Ry » P, Ry —~ P;,R3 — DP5}
Resource instances:
o One instance of resource type &y

o Two instances of resource type R,

288

Chapter 7 Teaciods

4

.

. .
.

R,]

Figure 7.2 Resource-allocation graph.

o One instance of resource type Rj

o Three instances of resource type Ry
Process states:

o Process P; is holding an instance of resource type R, and is waiting for
an instance of resource type R;.

o Process P is holding an instance of R; and an instance of R, and is
waiting for an instance of Rs.

o Process P; is holding an instance of Rj.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If
the graph does contain a cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process P; requests an instance of resource
type R,. Since no resource instance is currently available, a request edge P; —
Ry is added to the graph (Figure 7.3). At this point, two minimal cycles exist in
the system:

Pl—-> Rl——> Pz——> R3——> P3——> Rz——) P1
P> R3— Ph— Rp—> P

289

/

O

. °
.

R, .

A,
Figure 7.3 Resource-allocation graph with a deadlock.

Processes P;, P», and P are deadlocked. Process P, is waiting for the resource
Rz, which is held by process Ps. Process P is waiting for either process P; or
process P, to release resource R,. In addition, process P; is waiting for process
P to release resource Rj.

Now consider the resource-allocation graph in Figure 7.4. In this example,
we also have a cycle:

P> R — Ps—> R— P

However, there is no deadlock. Observe that process Py may release its instance
of resourcetype Ry. That resource can then be allocated to P;, breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is notf in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation is important when we deal
with the deadlock problem.

n A
./
.\\.
Ry
~

.

.\

Figure 7.4 Resource-allocation graph with a cycle but no deadlock.

290 Chapter7 Cezadiocks

7.3

Generally speaking, we can deal with the deadlock problem in one of three
ways:

@ We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlocked state.

¢ We can allow the system to enter a deadlocked state, detect it, and recover.

¢ We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including UNIX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
Before proceeding, we should mention that some researchers have argued that
none of the basic approaches alone is appropriate for the entire spectrum of
resource-allocation problems in operating systems. The basic approaches can
be combined, however, allowing us to select an optimal approach for each class
of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadlock-
prevention or a deadlock-avoidance scheme. Deaclock prevention provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in
Section 7 4.

Deadlock avoidance requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allo-
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

In the absence of algorithms to detect and recover from deadlocks, we may
arrive at a situation in which the system is in a deadlock state yet has no way
of recognizing what has happened. In this case, the undetected deadlock will
resultin deterioration of the system'’s performance, because resources are being
held by processes that cannot run and because more and more processes, as
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.

7.4 Deaclock Prevention 291

Although this method may not seem to be a viable approach to the deadlock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, which mustbe used constantly. Also, in some circumstances,
a system is in a frozen state but not in a deadlocked state. We see this situation,
for example, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

As we noted in Section 7.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4.1 Mutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted simultaneous access to the file. A process never
needs to wait for a sharable resource. In general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable.

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting resources for a process
precede all other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the
beginning of the process, then the process must initially request the DVD drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases

292

Chapter 7 “e:cicois

both the DVD drive and the disk file. The process must then again request the
disk file and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza-
tion may be low, since resources may be allocated but unused for a long period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printer, only if we can be sure that our
data will remain on the disk file. Otherwise, we must request all resources at
the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always allocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a process is holding
some resources and requests another resource that cannot be immediately
allocated to it (that is, the process must wait), then all resources the process is
currently holding are preempted. In other words, these resources are implicitly
released. The preempted resources are added to the list of resources for which
the process is waiting. The process will be restarted only when it can regain its
old resources, as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are allocated to some other process that is waiting for additional
resources. If so, we preempt the desired resources from the waiting process and
allocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
requests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

The fourth and final condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holds is to impose a total ordering of
all resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = {R;, Ry, ..., Ry} be the set of resource types. We
assign to each resource type a unique integer number, which allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R — N, where N is the
set of natural numbers. For example, if the set of resource types R includes
tape drives, disk drives, and printers, then the function F might be defined as
follows:

7.4 omooiooln Srsveniior 293

F(tape drive) =1
F(disk drive) =5
F (printer) = 12

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
is, a process can initially request any number of instances of a resource type
—say, R;. After that, the process can request instances of resource type R; if
and only if F(R;) > F(R;). For example, using the function defined previously,
a process that wants to use the tape drive and printer at the same time must
first request the tape drive and then request the printer. Alternatively, we can
require that a process requesting an instance of resource type R; must have
released any resources R; such that F(R;) > F(R;). It must also be noted that if
several instances of the same resource type are needed, a single request for all
of them must be issued.

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of processes involved in the circular wait be
{Py, P1, ..., Py}, where P; is waiting for a resource R;, which is held by process
Piy1. Modulo arithmetic is used on the indexes, so that P, is waiting for
a resource R, held by Fp.) Then, since process P;y; is holding resource R;
while requesting resource R;;;, we must have F(R;) < F(R;11) for all i. But
this condition means that F(Ry) < F(R;) < ... < F(R,) < F(Rg). By transitivity,
F(Ro) < F(Rg), which is impossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Figure 7.1 was

F(firstmutex) =1
F(second mutex) =5

then thread_two could not request the locks out of order.

Keep in mind that developing an ordering, or hierarchy, does not in itself
prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal order of usage of the resources in a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) < F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on BSD versions of UNIX such as FreeBSD, is known as
witness. Witness uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let’s use the program shown in Figure 7.1 as an
example. Assume that thread_one is the first to acquire the locks and does so in
the order (1) first mutex, (2) second.mutex. Witness records the relationship
that first_mutex must be acquired before second mutex. If thread two later

294

7.5

Chapter 7 Deadiacks
acquires the locks out of order, witness generates a warning message on the
system console.

Itis also important to note thatimposing a lock ordering does not guarantee
deadlock prevention if locks can be acquired dynamically. For example, assume
we have a function that transfers funds between two accounts. To prevent a
race condition, each account has an associated semaphore that is obtained from
a getLock () function such as the following:

void transaction(Account from, Account to, double amount)
{

Semaphore lockl, lock2;

lockl = getLock(from);

lock2 = getLock(to);

wait (lockl);
wait (lock2);

withdraw(from, amount);
deposit(to, amount);

signal(lock2);
signal (lockl);

}

Deadlock is possible if two threads simultaneously invoke the transaction()
function, transposing different accounts. That is, one thread might invoke

transaction{checkingAccount, savingsAccount, 25);
and another might invoke
transaction(savingsAccount, checkingAccount, 50);

We leave it as an exercise for students to fix this situation.

o ‘,ﬂ‘\l EaT A i
LeadiocK

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that
process P will request first the tape drive and then the printer before releasing
both resources, whereas process Q will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or
not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this decision the system consider the resources

295

currently available, the resources currently allocated to each process, and the
future requests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maximum number of resources of each type that it may need.
Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
is in a safe state only if there exists a safe seguence. A sequence of processes
<Py, Py, ..., P;> is a safe sequence for the current allocation state if, for each
P;, the resource requests that P; can still make can be satisfied by the currently
available resources plus the resources held by all P;, withj < 1. In this situation,
if the resources that P; needs are not immediately available, then P; can wait
until all P; have finished. When they have finished, P; can obtain all of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P; terminates, P;,; can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources in
such a way that a deadlock occurs. The behavior of the processes controls
unsafe states.

unsafe
deadlock

Figure 7.5 Safe, unsafe, and deadlocked state spaces.

296

Chapter 7 Dezoiccles

To illustrate, we consider a system with twelve magnetic tape drives and
three processes: Py, P1, and P». Process Py requires ten tape drives, process Py
may need asmany as four tape drives, and process P, may need up to nine tape
drives. Suppose that, at time fo, process P is holding five tape drives, process
Py is holding two tape drives, and process P, is holding two tape drives. (Thus,
there are three free tape drives.)

Maximum Needs Current Needs

Pq 10 5
Py 4 2
P, 9 2

At time 1y, the system is in a safe state. The sequence <P, Py, P,> satisfies
the safety condition. Process P; can immediately be allocated all its tape drives
and then return them (the system will then have five available tape drives);
then process Py can get all its tape drives and return them (the system will then
have ten available tape drives); and finally process P, can get all its tape drives
and return them (the system will then have all twelve tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
t, process P, requests and is allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P; can be allocated all its tape
drives. When it returns them, the system will have only four available tape
drives. Since process Py is allocated five tape drives but has a maximum of ten,
it may request five more tape drives. If it does so, it will have to wait, because
they are unavailable. Similarly, process P, may request six additional tape
drives and have to wait, resulting in a deadlock. Our mistake was in granting
the request from process P, for one more tape drive. If we had made P, wait
until either of the other processes had finished and released its resources, then
we could have avoided the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. The idea is simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the allocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available,
it may still have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with only one instance of each resource
type, we can use a variant of the resource-allocation graph defined in Section
7.2.2 for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a cizizn =cg=.
A claim edge P; — R; indicates that process P; may request resource R; at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process Pz- requests resource

7.5 ezcioci Avoidarnice 297

R,
Figure 7.6 Resource-allocation graph for deadlock avoidance.

R;, the claim edge P; — R; is converted to a request edge. Similarly, when a
resource R; is released by P;, the assignment edge R; — P; is reconverted to a
claim edge P; — R;.

We note that the resources must be claimed a priori in the system. That is,
before process P; starts executing, all its claim edges must already appear in
the resource-allocation graph. We can relax this condition by allowing a claim
edge P; — R; to be added to the graph only if all the edges associated with
process P; are claim edges.

Now suppose that process P; requests resource R;. The request can be
granted only if converting the request edge P; — R; to an assignment edge
R; — P; does not result in the formation of a cycle in the resource-allocation
graph. We check for safety by using a cycle-detection algorithm. An algorithm
for detecting a cycle in this graph requires an order of n* operations, where n
is the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in
an unsafe state. In that case, process P; will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that P, requests R,. Although R, is currently free, we
cannot allocate it to P, since this action will create a cycle in the graph (Figure
7.7). A cycle, as mentioned, indicates that the system is in an unsafe state. If P;
requests Ry, and P; requests Ry, then a deadlock will occur.

R

‘ e
<
~
N

R,

Figure 7.7 An unsafe state in a resource-allocation graph.

298

Chapter7 [

7.5.3 Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
allocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker’s algorithm. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Several data structures must be maintained to implement the banker’s
algorithm. These data structures encode the state of the resource-allocation
system. We need the following data structures, where # is the number of
processes in the system and m is the number of resource types:

¢ Available. A vector of length m indicates the number of available resources
of each type. If Awvailable[j] equals k, then k instances of resource type R;
are available.

© Max. An n x m matrix defines the maximum demand of each process.
If Max[i][j] equals k, then process P; may request at most k instances of
resource type R;.

o Allocation. Ann x m matrix defines the number of resources of each type
currently allocated to each process. If Allocation[i][j] equals k, then process
P; is currently allocated k instances of resource type R;.

o Need. An n x m matrix indicates the remaining resource need of each
process. If Need[{][j] equals k, then process P; may need k more instances of
resource type R; to complete its task. Note that Need[:][j] equals Max[z][j]
— Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker’s algorithm, we next establish
some notation. Let X and Y be vectors of length n. We say that X < Y if and
only if X[i] < Y[i] forall i =1, 2, ..., n. For example, if X =(1,7,3,2) and Y =
(0,3,2,1), then ¥ < X. In addition, Y < Xif Y < Xand Y # X

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocation; and Need;. The vector Allocation; specifies
the resources currently allocated to process P;; the vector Need; specifies the
additional resources that process P; may still request to complete its task.

7.5.3.1 Safety Algorithm

We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described as follows:

75 D

299

[

1. Let Work and Finish be vectors of length m and n, respectively. Initialize
Work = Available and Finish[i] = false fori=0,1,...,n — 1.

2. Find an index 7 such that both
a. Finish[i] == false
b. Need; < Work

If no such i exists, go to step 4.

Work = Work + Allocation;
Finish[i] = true
Go to step 2.

e

1=

If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m x n” operations to determine whether
a state is safe.

7.5.3.2 Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be safely
granted.

Let Request; be the request vector for process P;. If Request; [j] == k, then
process P; wants k instances of resource type R;. When a request for resources
is made by process P;, the following actions are taken:

i. If Request; < Need;, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.

2. If Request; < Awvailable, go to step 3. Otherwise, P; must wait, since the
resources are not available.

G2

Have the system pretend to have allocated the requested resources to
process P; by modifying the state as follows:

Available = Available - Request;;
Allocation; = Allocation; + Request;;
Need; = Need; - Request;;

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P; is allocated its resources. However, if the new state
is unsafe, then P; must wait for Request;, and the old resource-allocation
state is restored.

7.5.3.3 An Illustrative Example

To illustrate the use of the banker’s algorithm, consider a system with five
processes Py through Py and three resource types A, B, and C. Resource type A
has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time Ty, the following snapshot of the system
has been taken:

300

Chapter 7

Allocation Max Awvailable
ABC ABC ABC

Py 010 753 332
P, 200 322
P, 302 902
Py 211 222
Py 002 433

The content of the matrix Need is defined to be Max — Allocation and is as
follows:

Need

ABC
Py 743
P 122
P, 600
P 011
Py 431

We claim that the system is currently in a safe state. Indeed, the sequence
<P1, P5, Py, P, Py> satisfies the safety criteria. Suppose now that process
Py requests one additional instance of resource type A and two instances of
resource type C, so Request; = (1,0,2). To decide whether this request can be
immediately granted, we first check that Request; < Available—that is, that
(1,0,2) < (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:

Allocation Need Available
ABC ABC ABC

By 010 743 230
P 302 020
P 302 600
P 211 011
Py 002 431

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <Py, P53, Py, Py, Po>
satisfies the safety requirement. Hence, we can immediately grant the request
of process P;.

You should be able to see, however, that when the system is in this state, a
request for (3,3,0) by P, cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by Py cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise for students to implement the
banker’s algorithm.

7.6

7.6 Deadlock Detection 301

Lo % et oy oo o
L LLETECTton

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may occur. In this environment,
the system may provide:

© An algorithm that examines the state of the system to determine whether
a deadlock has occurred

¢ Analgorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well as to
systems with several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph, called
a wait-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from P; to P; in a wait-for graph implies that
process P; is waiting for process P; to release a resource that P; needs. An edge
P; — P; exists in a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges P; — R, and R; — P; for some resource
R,. For example, in Figure 7.8, we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for
graph and periodically invoke an algorithm that searches for a cycle in the graph.
An algorithm to detect a cycle in a graph requires an order of 1> operations,
where 71 is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm thatis applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker’s algorithm (Section 7.5.3):

@

Available. A vector of length m indicates the number of available resources
of each type.

Allocation. An 7 x m matrix defines the number of resources of each type
currently allocated to each process.

302 Chapter 7

o

)

R, Rs
(a) (b)

Figure 7.8 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

Request. An 1 x m matrix indicates the current request of each process.
If Request[i][j] equals k, then process F; is requesting k more instances of
resource type R;.

The < relation between two vectors is defined as in Section 7.5.3. To simplify

notation, we again treat the rows in the matrices Allocation and Request as
vectors; we refer to them as Allocation; and Request;. The detection algorithm
described here simply investigates every possible allocation sequence for the
processes that remain to be completed. Compare this algorithm with the
banker’s algorithm of Section 7.5.3.

)

Let Work and Finish be vectors of length m and #, respectively. Initialize
Work = Available. Fori=0, 1, ..., n-1, if Allocation; # 0, then Finish[i] = false;
otherwise, Finish[i] = true.

Find an index i such that both
a. Finish[i] == false
b. Request; < Work

If no such i exists, go to step 4.

Work = Work + Allocation;
Finish[i] = true
Go to step 2.

If Finish|i] == false for some 1, 0 <1 < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process P; is deadlocked.

This algorithm requires an order of m x 172 operations to detect whether the
system is in a deadlocked state.

7.6 Deadlock Detection 303

You may wonder why we reclaim the resources of process P; (in step 3)
as soon as we determine that Request; < Work (in step 2b). We know that P;
is currently not involved in a deadlock (since Request; < Work). Thus, we take
an optimistic attitude and assume that P; will require no more resources to
complete its task; it will thus soon return all currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes P,
through P, and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has six
instances. Suppose that, at time Ty, we have the following resource-allocation
state:

Allocation Request — Available
ABC ABC ABC

Py 010 000 000
P, 200 202
P, 303 000
P 211 100
Py 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Py, P>, P3, Pi, Py> results in
Finish[i] == true for all i.

Suppose now that process P> makes one additional request for an instance
of type C. The Regquest matrix is modified as follows:

Reguest

ABC
Py 000
Py 202
P, 001
Ps 100
Py 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process Py, the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes Py, P», P;, and Pj.

7.6.3 Detection-Algorithm Usage
When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

304

7.7

Chapter 7 Deadiocks

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot be
granted immediately. This request may be the final request that completes a
chain of waiting processes. In the extreme, then, we can invoke the deadlock-
detection algorithm every time a request for allocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that “caused” the deadlock. (In reality,
each of the deadlocked processes is a link in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and “caused” by the one identifiable
process.

Of course, invoking the deadlock-detection algorithm for every resource
request will incur considerable overhead in computation time. A less expensive
alternative is simply to invoke the algorithm at defined intervals—for example,
once per hour or whenever CPU utilization drops below 40 percent. (A deadlock
eventually cripples system throughput and causes CPU utilization to drop.) If
the detection algorithm is invoked at arbitrary points in time, the resource
graph may contain many cycles. In this case, we generally cannot tell which of
the many deadlocked processes “caused” the deadlock.

When a detection algorithm determines that a deadlock exists, several alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims all resources allocated to the terminated
processes.

© Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

o Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since after each process is aborted, a
deadlock-detection algorithm must be invoked to determine whether any
processes are still deadlocked.

7.7 Recovery from Deadlodk 305

Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
a policy decision, similar to CPU-scheduling decisions. The question is basically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term minimum cost is not a precise one.
Many factors may affect which process is chosen, including;:

—~

1. What the priority of the process is

2. How long the process has computed and how much longer the process
will compute before completing its designated task

2

How many and what types of resources the process has used (for example,
whether the resources are simple to preempt)

Ha

How many more resources the process needs in order to complete

L

How many processes will need to be terminated

N

Whether the process is interactive or batch

7.7.2 BResource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

1. Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

Z. Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

306

7.8

Chapter 7 Deadlocks

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

A deadlocked state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

¢ Use some protocol to prevent or avoid deadlocks, ensuring that the system
will never enter a deadlocked state.

e Allow the system to enter a deadlocked state, detect it, and then recover.

e Ignore the problem altogether and pretend that deadlocks never occur in
the system.

The third solution is the one used by most operating systems, including UNIX
and Windows.

A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks, rather than preventing them, requires
that the operating system have a priori information about how each process
will utilize system resources. The banker’s algorithm, for example, requires
a priori information about the maximum number of each resource class that
each process may request. Using this information, we can define a deadlock-
avoidance algorithm.

If a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme may be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Researchers have argued that none of the basic approaches alone is appro-
priate for the entire spectrum of resource-allocation problems in operating
systems. The basic approaches can be combined, however, allowing us to select
an optimal approach for each class of resources in a system.

Exercises 307

B o e] o e
mHercises

7.1

7.2
7.3

7.4

7.5

A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge
can become deadlocked if a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initially, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

Modify your solution to Exercise 7.1 so that it is starvation-free.

Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free.

Consider the traffic deadlock depicted in Figure 7.9.

a. Show that the four necessary conditions for deadlock hold in this
example.

b. State a simple rule for avoiding deadlocks in this system.
In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and go,

and new resources are bought and added to the system. If deadlock is
controlled by the banker’s algorithm, which of the following changes

.

=
=

Figure 7.9 Traffic deadlock for Exercise 7.4

308

Chapter 7 Deadlocks

7.6

7.7

7.8

can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

a. Increase Available (new resources added).
b. Decrease Available (resource permanently removed from system).

c. Increase Max for one process (the process needs or wants more
resources than allowed).

d. Decrease Max for one process (the process decides it does not need
that many resources).

e. Increase the number of processes.

f. Decrease the number of processes.

We can obtain the banker’s algorithm for a single resource type from
the general banker’s algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that we cannot
implement the multiple-resource-type banker’s scheme by applying the
single-resource-type scheme to each resource type individually.

Consider the following resource-allocation policy. Requests for and
releases of resources are allowed at any time. If a request for resources
cannot be satisfied because the resources are not available, then we check
any processes that are blocked waiting for resources. If a blocked process
has the desired resources, then these resources are taken away from it
and are given to the requesting process. The vector of resources for which
the blocked process is waiting is increased to include the resources that
were taken away.

For example, consider a system with three resource types and the
vector Available initialized to (4,2,2). If process Py asks for (2,2,1), it gets
them. If Py asks for (1,0,1), it gets them. Then, if P, asks for (0,0,1), it
is blocked (resource not available). If P, now asks for (2,0,0), it gets the
available one (1,0,0) and one that was allocated to Py (since Py isblocked).
Py’s Allocation vector goes down to (1,2,1), and its Need vector goes up
to (1,0,1).

a. Can deadlock occur? If you answer “yes,” give an example. If you
answer “no,” specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

A possible method for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization
objects A --- E, deadlock is possible. (Such synchronization objects may
include mutexes, semaphores, condition variables, and the like.) We can
prevent the deadlock by adding a sixth object F. Whenever a thread
wants to acquire the synchronization lock for any object A- - - E, it must
first acquire the lock for object F . This solution is known as containment:
the locks for objects A--- E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.

7.9

7.10

711

7.12

309

HXercise

[43]

Compare the circular-wait scheme with the various deadlock-avoidance
schemes (like the banker’s algorithm) with respect to the following
issues:

a. Runtime overheads
b. System throughput

Consider the following snapshot of a system:

Allocation Max Awvailable

ABCD ABCD ABCD
Py 0012 0012 1520
Py 1000 1750
by 1354 2356
Ps 0632 0652
by 0014 0656

Answer the following questions using the banker’s algorithm:
What is the content of the matrix Need?
b. Isthesystemin a safe state?

c. Ifarequest from process P arrives for (0,4,2,0), can the request be
granted immediately?

Consider a system consisting of m resources of the same type being
shared by 1 processes. A process can request or release only one resource
at a time. Show that the system is deadlock free if the following two
conditions hold:

a. The maximum need of each process is between one resource and
1 resources.

b. The sum of all maximum needs is less than n1 + n.

Consider a computer system that runs 5,000 jobs per month and has no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun about
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the
jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker’s algorithm) could be installed in the system
with anincreasein the average execution time perjob of about 10 percent.
Since the machine currently has 30 percent idle time, all 5,000 jobs per
month could still be run, although turnaround time would increase by
about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

310 Chapter 7 Deadliacks

7.13

7.14

7.15

7.16

7.17

7.18

7.19

o g e et T
Frogramiming Fro
= =

Consider the deadlock situation that can occur in the dining-
philosophers problem when the philosophers obtain the chopsticks one
at a time. Discuss how the four necessary conditions for deadlock hold
in this setting. Discuss how deadlocks could be avoided by eliminating
any one of the four necessary conditions.

What is the optimistic assumption made in the deadlock-detection
algorithm? How can this assumption be violated?

Consider the version of the dining-philosophers problem in which the
chopsticks are placed at the center of the table and any two of them
can be used by a philosopher. Assume that requests for chopsticks are
made one at a time. Describe a simple rule for determining whether a
particular request can be satisfied without causing deadlock given the
current allocation of chopsticks to philosophers.

Isit possible to have a deadlock involving only a single process? Explain
your answer.

Consider again the setting in the preceding question. Assume now that
each philosopher requires three chopsticks to eat. Resource requests are
still issued one at a time. Describe some simple rules for determining
whether a particular request can be satisfied without causing deadlock
given the current allocation of chopsticks to philosophers.

In Section 7.4.4, we describe a situation in which we prevent deadlock
by ensuring that all locks are acquired in a certain order. However,
we also point out that deadlock is possible in this situation if two
threads simultaneously invoke the transaction() function. Fix the
transaction() function to prevent deadlocks.

g 47;‘7“
2T

n

Write a multithreaded program that implements the banker’s algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
either Pthreads or Win32 threads. It is important that shared data be safe
from concurrent access. To ensure safe access to shared data, you can
use mutex locks, which are available in both the Pthreads and Win32
APIs. The use of mutex locks in both of these libraries is described in the
project entitled “Producer—Consumer Problem” at the end of Chapter 6.

Dijkstra [1965a] was one of the first and most influential contributors in the
deadlock area. Holt [1972] was the first person to formalize the notion of
deadlocks in terms of an allocation-graph model similar to the one presented
in this chapter. Starvation was also covered by Holt [1972]. Hyman [1985]
provided the deadlock example from the Kansas legislature. A recent study of
deadlock handling is provided in Levine [2003].

Bibliographical Notes 311

The various prevention algorithms were suggested by Havender [1968],
who devised the resource-ordering scheme for the IBM OS/360 system.

The banker’s algorithm for avoiding deadlocks was developed for a single
resource type by Dijkstra [1965a] and was extended to multiple resource types
by Habermann [1969]. Exercises 7.3 and 7.11 are from Holt [1971].

The deadlock-detection algorithm for multiple instances of a resource type,
which is described in Section 7.6.2, was presented by Coffman et al. [1971].

Bach [1987] describes how many of the algorithms in the traditional UNIX
kernel handle deadlock. Solutions to deadlock problems in networks are
discussed in works such as Culler et al. [1998] and Rodeheffer and Schroeder
[1991].

The witness lock-order verifier is presented in Baldwin [2002].

Part Four

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be at least partially
in main memory during execution.

To improve both the utilization of the CPU and the speed of its
response to users, a general-purpose computer must keep several pro-
cesses in memory. Many memory-management schemes exist, reflect-
ing various approaches, and the effectiveness of each algorithm depends
on the situation. Selection of a memory-management scheme for a sys-
tem depends on many factors, especially on the hardware design of the
system. Most algorithms require hardware support.

8.1

CHAPTER

In Chapter 5, we showed how the CPU can be shared by a set of processes. As
a result of CPU scheduling, we can improve both the utilization of the CPU and
the speed of the computer’s response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially on the hardware design of the
system. As we shall see, many algorithms require hardware support, although
recent designs have closely integrated the hardware and operating system.

fe)

To provide a detailed description of various ways of organizing memory
hardware.

¢ To discuss various memory-management technigues, including paging
and segmentation.

¢ To provide a detailed description of the Intel Pentium, which supports both
pure segmentation and segmentation with paging.

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each
with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

315

316

Chapter 8

operands, results may be stored back in memory. The memory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore how a program
generates a memory address. We are interested only in the sequence of memory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to the
various techniques for managing memory. This coverage includes an overview
of basic hardware issues, the binding of symbolic memory addresses to actual
physical addresses, and the distinction between logical and physical addresses.
We conclude the section with a discussion of dynamically loading and linking
code and shared libraries.

8.1.1 Basic Hardware

Main memory and the registers built into the processor itself are the only
storage that the CPU can access directly. There are machine instructions that take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions,
must be in one of these direct-access storage devices. If the data are not in
memory, they must be moved there before the CPU can operate on them.
Registers that are built into the CPU are generally accessible within one
cycle of the CPU clock. Most CPUs can decode instructions and perform simple
operations on register contents at the rate of one or more operations per
clock tick. The same cannot be said of main memory, which is accessed via
a transaction on the memory bus. Completing a memory access may take
many cycles of the CPU clock. In such cases, the processor normally needs
to stail, since it does not have the data required to complete the instruction
that it is executing. This situation is intolerable because of the frequency of
memory accesses. The remedy is to add fast memory between the CPU and

0
operating
system
256000
process
300040 300040
process base
420940 120900
limit
process
880000
1024000

Figure 8.1 A base and a limit register define a logical address space.

8.1 Background 317

main memory. A memory buffer used to accommodate a speed differential,
called a cache, is described in Section 1.8.3.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation to protect the operating
system from access by user processes and, in addition, to protect user processes
from one another. This protection must be provided by the hardware. It can be
implemented in several ways, as we shall see throughout the chapter. In this
section, we outline one possible implementation.

We first need to make sure that each process has a separate memory space.
To do this, we need the ability to determine the range of legal addresses that
the process may access and to ensure that the process can access only these
legal addresses. We can provide this protection by using two registers, usually
a base and a limit, as illustrated in Figure 8.1. The base register holds the
smallest legal physical memory address; the limit register specifies the size of
the range. For example, if the base register holds 300040 and the limit register is
120900, then the program can legally access all addresses from 300040 through
420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users” memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers’ contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating system memory and users” memory. This provision
allows the operating system to load users’ programs into users’ memory, to

base base -+ limit

address es es
CPU —><2/y—>\< y

no no

|

trap to operating system
monitor—addressing error memory

Figure 8.2 Hardware address protection with base and limit registers.

318

Chapter 8 Memory-Management Strategies

dump out those programs in case of errors, to access and modify parameters
of system calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input gueue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through several steps—some of which may be optional—Dbefore being
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as “14 bytes from the beginning of this module”). The linkage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

e Compile time. If you know at compile time where the process will reside
inmemory, then zbsolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.

© Load time. If itis not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

D

Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.

8.1 Background 319

source
program

compiler or compile
assembler time
object
module
other
object
modules
-
linkage
editor
load L load
module time
system
library
loader
dynamically)
loaded
system v
library .

. (n-memory execution
dynamic binary time (run
linking memory time)

image

Figure 8.3 Multistep processing of a user program.

8.1.3 Logical versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical :
whereas an address seen by the memory unit—that is, the one loaded into

n ddress register of the memory—is commonly referred to as a
ess.

The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses. However, the execution- tlme address-
b1nd1ncr scheme results in differing logical and physmal addresses. In this case,
we usually refer to the logical address asav i address. We use logical address
and virtual address mterchangeably in this text. The set of all logical addresses
generated by a program is a logical address space; the set of all physical
addresses corresponding to these log1cal addressesisa physical address space.
Thus, in the execution-time address-binding scheme, the logical and physical
address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from many different methods to accomphsh such mapping, as we discuss in

320

Chapter 8 Memory-IManagement Strategies
relocation
register
14000
logical physical
address /\ address
CPU + memary
346 _/ 14346
MMU

Figure 8.4 Dynamic relocation using a relocation register.

Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme that is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a relccation register.
The value in the relocation register is added to every address generated by a user
process at the time the address is sent to memory (see Figure 8.4). For example,
if the base is at 14000, then an attempt by the user to address location 0 is
dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346. The MS-DOS operating system running on the Intel 80x86
family of processors used four relocation registers when loading and running
processes.

The user program never sees the real physical addresses. The program can
create a pointer tolocation 346, store itin memory, manipulateit, and compare it
with other addresses—all as the number 346. Only when itis used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base
value R). The user generates only logical addresses and thinks that the process
runs in locations 0 to max. The user program generates only logical addresses
and thinks that the process runs in locations 0 to max. However, these logical
addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical
address space is central to proper memory management.

8.1.4 Dynamic Loading

In our discussion so far, it has been necessary for the entire program and all
data of a process to be in physical memory for the process to execute. The size
of a process has thus been limited to the size of physical memory. To obtain
better memory-space utilization, we can use dynamic loading. With dynamic

round 321

loading, a routine is not loaded until it is called. All routines are kept on disk
in a relocatable load format. The main program is loaded into memory and
is executed. When a routine needs to call another routine, the calling routine
first checks to see whether the other routine has been loaded. If it has not, the
relocatable linking loader is called to load the desired routine into memory and
to update the program’s address tables to reflect this change. Then control is
passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows dynamically linked libraries. Some operating systems
support only static Iinki

ing, in which system language libraries are treated
like any other object module and are combined by the loader into the binary
program image. Dynamic linking, in contrast, is similar to dynamic loading.
Here, though, linking, rather than loading, is postponed until execution time.
This feature is usually used with system libraries, such as language subroutine
libraries. Without this facility, each program on a system must include a copy
of its language library (or at least the routines referenced by the program) in the
executable image. This requirement wastes both disk space and main memory.

With dynamic linking, a stub is included in the image for each library-
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If it is not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particular
code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A library
may be replaced by a new version, and all programs that reference the library
will automatically use the new version. Without dynamic linking, all such
programs would need to be relinked to gain access to the new library. So that
programs will not accidentally execute new, incompatible versions of libraries,
version information is included in both the program and the library. More than
one version of a library may be loaded into memory, and each program uses its
version information to decide which copy of the library to use. Versions with
minor changes retain the same version number, whereas versions with major
changes increment the number. Thus, only programs that are compiled with
the new library version are affected by any incompatible changes incorporated

322

8.2

Chapter 8 Memory-Management Sirategies

in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared iibraries.

Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the
needed routine is in another process’s memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4.

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a quantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 8.5). In the meantime, the CPU scheduler will allocate a time slice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CPU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the

operating ~—

system

process P,

user

space backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.

8.2 Swapping 323

lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roil out, roll in.

Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or load time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of all memory images
for all users, and it must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Whenever
the CPU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get
an idea of the context-switch time, let us assume that the user process is 100
MB in size and the backing store is a standard hard disk with a transfer rate of
50 MB per second. The actual transfer of the 100-MB process to or from main
memory takes

100 MB/50 MB per second = 2 seconds.

Assuming an average latency of 8 milliseconds, the swap time is 2008
milliseconds. Since we must both swap out and swap in, the total swap time is
about 4016 milliseconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If we
have a computer system with 4 GB of main memory and a resident operating
system taking 1 GB, the maximum size of the user process is 3 GB. However,
many user processes may be much smaller than this—say, 100 MB. A 100-MB
process could be swapped out in 2 seconds, compared with the 60 seconds
required for swapping 3 GB. Clearly, it would be useful to know exactly how
much memory a user process is using, not simply how much it might be using.
Then we would need to swap only what is actually used, reducing swap time.
For this method to be effective, the user must keep the system informed of
any changes in memory requirements. Thus, a process with dynamic memory
requirements will need to issue system calls (request memory and release
memory) to inform the operating system of its changing memory needs.

Swapping is constrained by other factors as well. If we want to swap
a process, we must be sure that it is completely idle. Of particular concern
is any pending I/0. A process may be waiting for an I/O operation when
we want to swap that process to free up memory. However, if the 1/0 is
asynchronously accessing the user memory for 1/0 buffers, then the process
cannot be swapped. Assume that the I/O operation is queued because the
device is busy. If we were to swap out process P; and swap in process P,, the

324

8.3

5
o
)
€8]
D

Chapter 8 Memory-lManagem:

I/0 operation might then attempt to use memory that now belongs to process
P>. There are two main solutions to this problem: never swap a process with
pending 1/0, or execute I/O operations only into operating-system buffers.
Transfers between operating-system buffers and process memory then occur
only when the process is swapped in.

The assumption, mentioned earlier, that swapping requires few, if any,
head seeks needs further explanation. We postpone discussing this issue until
Chapter 12, where secondary-storage structure is covered. Generally, swap
space is allocated as a chunk of disk, separate from the file system, so that its
use is as fast as possible.

Currently, standard swapping is used in few systems. It requires too
much swapping time and provides too little execution time to be a reasonable
memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping is
normally disabled but will start if many processes are running and are using a
threshold amount of memory. Swapping is again halted when the load on the
system is reduced. Memory management in UNIX is described fully in Sections
21.7 and A.6.

Early PCs—which lacked the sophistication to implement more advanced
memory-management methods—ran multiple large processes by using a
modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old